| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910798732003321 |
|
|
Autore |
Mitrea Dorina |
|
|
Titolo |
The Hodge-Laplacian : boundary value problems on Riemannian manifolds / / Dorina Mitrea [and three others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2016 |
|
©2016 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-11-048339-4 |
3-11-048438-2 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (528 pages) |
|
|
|
|
|
|
Collana |
|
De Gruyter Studies in Mathematics, , 0179-0986 ; ; Volume 64 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Riemannian manifolds |
Boundary value problems |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Preface -- Contents -- 1. Introduction and Statement of Main Results -- 2. Geometric Concepts and Tools -- 3. Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains -- 4. Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains -- 5. Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains -- 6. Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains -- 7. Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism -- 8. Additional Results and Applications -- 9. Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis -- Bibliography -- Index -- Backmatter |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to |
|
|
|
|
|
|
|
|
|
|
absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains.Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex |
|
|
|
|
|
| |