|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910798386803321 |
|
|
Autore |
Ikromov Isroil A. <1961-> |
|
|
Titolo |
Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra / / Isroil A. Ikromov and Detlef Müller |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton : , : Princeton University Press, , [2016] |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (269 p.) |
|
|
|
|
|
|
Collana |
|
Annals of mathematics studies ; ; number 194 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Hypersurfaces |
Polyhedra |
Surfaces, Algebraic |
Fourier analysis |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Contents -- Chapter 1. Introduction -- Chapter 2. Auxiliary Results -- Chapter 3. Reduction to Restriction Estimates near the Principal Root Jet -- Chapter 4. Restriction for Surfaces with Linear Height below 2 -- Chapter 5. Improved Estimates by Means of Airy-Type Analysis -- Chapter 6. The Case When hlin(Φ) ≥ 2: Preparatory Results -- Chapter 7. How to Go beyond the Case hlin(Φ) ≥ 5 -- Chapter 8. The Remaining Cases Where m = 2 and B = 3 or B = 4 -- Chapter 9. Proofs of Propositions 1.7 and 1.17 -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface.Isroil Ikromov and Detlef Müller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out |
|
|
|
|