1.

Record Nr.

UNINA9910797139603321

Autore

Wan Shibiao

Titolo

Machine learning for protein subcellular localization prediction / / Shibiao Wan, Man-Wai Mak

Pubbl/distr/stampa

Berlin, Germany ; ; Boston, Massachusetts : , : De Gruyter, , 2015

©2015

ISBN

1-5015-0150-X

1-5015-0152-6

Descrizione fisica

1 online resource (210 p.)

Classificazione

WC 7700

Disciplina

572/.696

Soggetti

Proteins - Physiological transport - Data processing

Machine learning

Probabilities - Data processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Front matter -- Preface -- Contents -- List of Abbreviations -- 1. Introduction -- 2. Overview of subcellular localization prediction -- 3. Legitimacy of using gene ontology information -- 4. Single-location protein subcellular localization -- 5. From single- to multi-location -- 6. Mining deeper on GO for protein subcellular localization -- 7. Ensemble random projection for large-scale predictions -- 8. Experimental setup -- 9. Results and analysis -- 10. Properties of the proposed predictors -- 11. Conclusions and future directions -- A. Webservers for protein subcellular localization -- B. Support vector machines -- C. Proof of no bias in LOOCV -- D. Derivatives for penalized logistic regression -- Bibliography -- Index

Sommario/riassunto

Comprehensively covers protein subcellular localization from single-label prediction to multi-label prediction, and includes prediction strategies for virus, plant, and eukaryote species. Three machine learning tools are introduced to improve classification refinement, feature extraction, and dimensionality reduction.



2.

Record Nr.

UNISANNIOCFI0775813

Titolo

Italian journal of engineering geology and environment. Book series

Pubbl/distr/stampa

Roma, : Casa editrice Università La Sapienza

ISSN

1825-6635

Collana

Italian journal of engineering geology and environment

Lingua di pubblicazione

Non definito

Livello bibliografico

Periodico

Note generali

Altra edizione: eISSN 20355688