|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910796637103321 |
|
|
Autore |
Russell Esra <1979-> |
|
|
Titolo |
Oscillatory models in general relativity / / Esra Russell, Oktay K. Pashaev |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2018 |
|
©2018 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (154 pages) |
|
|
|
|
|
|
Collana |
|
De Gruyter Studies in Mathematical Physics, , 21943532 ; ; Volume 41 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Cosmic physics |
Oscillations |
Stellar oscillations |
General relativity (Physics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Contents -- Introduction -- Part I: Dissipative geometry and general relativity theory -- 1. Pseudo-Riemannian geometry and general relativity -- 2. Dynamics of universe models -- 3. Anisotropic and homogeneous universe models -- 4. Metric waves in a nonstationary universe and dissipative oscillator -- 5. Bosonic and fermionic models of a Friedman-Robertson-Walker universe -- 6. Time dependent constants in an oscillatory universe -- Part II: Variational principle for time dependent oscillations and dissipations -- 7. Lagrangian and Hamilton descriptions -- 8. Damped oscillator: classical and quantum theory -- 9. Sturm-Liouville problem as a damped oscillator with time dependent damping and frequency -- 10. Riccati representation of time dependent damped oscillators -- 11. Quantization of the harmonic oscillator with time dependent parameters -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The book employs oscillatory dynamical systems to represent the Universe mathematically via constructing classical and quantum theory of damped oscillators. It further discusses isotropic and homogeneous metrics in the Friedman-Robertson-Walker Universe and shows their equivalence to non-stationary oscillators. The wide class of exactly |
|
|
|
|