1.

Record Nr.

UNINA9910794995303321

Autore

Burban Igor <1977->

Titolo

Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems / / Igor Burban, Yuriy Drozd

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , 2017

©2017

ISBN

1-4704-4058-X

Descrizione fisica

1 online resource (134 pages)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; Volume 248, Number 1178

Disciplina

512/.44

Soggetti

Cohen-Macaulay modules

Modules (Algebra)

Singularities (Mathematics)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Introduction, motivation, and historical remarks -- Generalities on maximal Cohen-Macaulay modules -- Category of triples in dimension one -- Main construction -- Serre quotients and proof of main theorem -- Singularities obtained by gluing cyclic quotient singularities -- Maximal Cohen-Macaulay modules over k[x,y,z]/(x p2 s+y p3 s-xyz) -- Representations of decorated bundles of chans - I -- Maximal Cohen-Macaulay modules over degenerate cusps - I -- Maximal Cohen-Macaulay modules over degenerate cusps - II -- Schreyer's question -- Remarks on rings of discrete and tame CM-representation type -- Representations of decorated bunches of chans - II.