| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910793692703321 |
|
|
Autore |
Menéndez de Avilés Pedro <1519-1574, > |
|
|
Titolo |
Cartas sobre la Florida, 1555-1574 / / Pedro Menendez de Aviles, Juan Carlos Mercado, edicion, introduccion y notas |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Frankfurt am Main : , : Vervuert |
|
Madrid : , : Iberoamericana, , [2002] |
|
©2002 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (294 p.) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
LITERARY CRITICISM / American / General |
Spain History 16th century |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Bibliografía: páginas 44-48. |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Indice -- Indice de láminas -- Agradecimientos -- Abreviaturas -- Introducción -- Cronología -- Láminas -- CARTAS DE PEDRO MENÉNDEZ DE AVILÉS -- I. Sevilla, 27 de julio de 1555 -- II. San Sebastián, 13 de abril de 1557 -- III. San Sebastián, 14 de abril de 1557 -- IV. San Sebastián, 13 de mayo de 1557 -- V. San Sebastián, 13 de mayo de 1557 -- VI. Laredo, 27 de mayo de 1557 -- VII. Laredo, 2 de junio de 1557 -- VIII. Laredo, 6 de octubre de 1557 -- IX. San Sebastián, 22 de octubre de 1557 -- X. Sanlúcar de Barrameda, 5 de abril de 1562 -- XI. Sevilla, 27 de julio de 1563 -- XII. Sevilla, 21 de agosto de 1563 -- XIII. Sevilla, 15 de septiembre de 1563 -- XIV. Sevilla, 24 de septiembre de 1563 -- XV. Sevilla, 8 de enero de 1564 -- XVI. Sevilla, 18 de mayo de 1565 -- XVII. Sevilla, 28 de mayo de 1565 -- XVIII. Puerto Rico, 13 de agosto de 1565 -- XIX. La Florida, 11 de septiembre de 1565 -- XX. San Agustín, La Florida, 15 de octubre de 1565 -- XXI. Matanzas, 5 de diciembre de 1565 -- XXII. Habana, 16 de diciembre de 1565 -- XXIII. Habana,25 de diciembre de 1565 -- XXIV. Habana, 30 de enero de 1566 -- XXV. San Agustín, La Florida, 15 de octubre de 1566 -- XXVI. Santo Domingo, 29 de noviembe de 1566 -- XXVII. Sevilla, 23 de septiembre de 1567 -- XXVIII. Santander, 12 de mayo de 1568 -- XXIX. Sevilla, 22 de septiembe de 1569 -- XXX. Escalona, 12 de noviembre de 1569 -- XXXI. Sevilla, 20 de noviembre |
|
|
|
|
|
|
|
|
|
|
|
de 1569 -- XXXII. Sevilla, 24 de noviembre de 1569 -- XXXIII. Sevilla, 27 de noviembre de 1569 -- XXXIV. Sevilla, 4 de diciembre de 1569 -- XXXV. Cádiz, 31 de diciembre de 1569 -- XXXVI. Cádiz, 4 de enero de 1570 -- XXXVII. Sevilla, 3 de diciembre de 1570 -- XXXVIII. Sanlúcar de Barrameda, 1570 -- XXXIX. Sevilla, 23 de enero de 1571 -- XL. Sevilla, 12 de marzo de 1571 -- XLI. Sanlúcar de Barrameda, 15 de mayo de 1571 -- XLII. Sanflanejos, 15 de mayo de 1571 -- XLIII. Sanlúcar de Barrameda, 16 de mayo de 1571 -- XLIV. Santa Elena, fuerte de San Felipe, 22 de julio de 1571 -- XLV. Bilbao, 4 de marzo de 1574 -- XLVI. Bilbao, 4 de marzo de 1574 -- XLVII. Bilbao, 15 de marzo de 1574 -- XLVIII. Santoña, 18 de marzo de 1574 -- XLIX. Bilbao, abril de 1574 -- L. Bilbao, 11 de mayo de 1574 -- LI. Bilbao, 11 de mayo de 1574 -- LII. Bilbao, 17 de mayo de 1574 -- LIII. Bilbao, 23 de mayo de 1574 -- LIV. Bilbao, 24 de mayo de 1574 -- LV. Santander, 3 de agosto de 1574 -- LVI. Santander, 15 de agosto de 1574 -- LVII. Laredo, 1 de septiembre de 1574 -- LVIII. Santander, 2 de septiembre de 1574 -- LIX. Santander, 8 de septiembre de 1574 |
|
|
|
|
|
|
Sommario/riassunto |
|
Se ofrece en este volumen la edición anotada de las cartas de Pedro Menéndez de Avilés; hombre de confianza de Carlos V y luego de Felipe II, personaje clave en la política de la monarquía católica en ese momento histórico. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910807155803321 |
|
|
Titolo |
Fractional calculus with applications in mechanics : wave propagation, impact and variational principles / / Teodor M. Atanacković [and three others] ; series editor, Noël Challamel |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-118-90913-5 |
1-118-90906-2 |
1-118-90901-1 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (424 p.) |
|
|
|
|
|
|
Collana |
|
Mechanical Engineering and Solid Mechanics Series |
|
|
|
|
|
|
Altri autori (Persone) |
|
AtanackovićTeodor M |
ChallamelNoël |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Calculus |
Fractional calculus |
Viscoelasticity - Mathematical models |
Waves - Mathematical models |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover; Title Page; Contents; Preface; PART 1. MATHEMATICAL PRELIMINARIES, DEFINITIONS AND PROPERTIES OF FRACTIONAL INTEGRALS AND DERIVATIVES; Chapter 1. Mathematical Preliminaries; 1.1. Notation and definitions; 1.2. Laplace transform of a function; 1.3. Spaces of distributions; 1.4. Fundamental solution; 1.5. Some special functions; Chapter 2. Basic Definitions and Properties of Fractional Integrals and Derivatives; 2.1. Definitions of fractional integrals and derivatives; 2.1.1. Riemann-Liouville fractional integrals and derivatives |
2.1.1.1. Laplace transform of Riemann-Liouville fractional integrals and derivatives2.1.2. Riemann-Liouville fractional integrals and derivatives on the real half-axis; 2.1.3. Caputo fractional derivatives; 2.1.4. Riesz potentials and Riesz derivatives; 2.1.5. Symmetrized Caputo derivative; 2.1.6. Other types of fractional derivatives; 2.1.6.1. Canavati fractional derivative; 2.1.6.2. Marchaud fractional derivatives; 2.1.6.3. Grünwald-Letnikov fractional derivatives; 2.2. Some additional properties of |
|
|
|
|
|
|
|
|
|
|
|
fractional derivatives; 2.2.1. Fermat theorem for fractional derivative |
2.2.2. Taylor theorem for fractional derivatives2.3. Fractional derivatives in distributional setting; 2.3.1. Definition of the fractional integral and derivative; 2.3.2. Dependence of fractional derivative on order; 2.3.3. Distributed-order fractional derivative; PART 2. MECHANICAL SYSTEMS; Chapter 3. Waves in Viscoelastic Materials of Fractional-Order Type; 3.1. Time-fractional wave equation on unbounded domain; 3.1.1. Time-fractional Zener wave equation; 3.1.2. Time-fractional general linear wave equation; 3.1.3. Numerical examples; 3.1.3.1. Case of time-fractional Zener wave equation |
3.1.3.2. Case of time-fractional general linear wave equation3.2. Wave equation of the fractional Eringen-type; 3.3. Space-fractional wave equation on unbounded domain; 3.3.1. Solution to Cauchy problem for space-fractional wave equation; 3.3.1.1. Limiting case ß -> 1; 3.3.1.2. Case u0(x)...; 3.3.1.3. Case u0 (x)...; 3.3.1.4. Case u0(x)...; 3.3.2. Solution to Cauchy problem for fractionally damped space-fractional wave equation; 3.4. Stress relaxation, creep and forced oscillations of a viscoelastic rod; 3.4.1. Formal solution to systems [3.110]-[3.112], [3.113] and either [3.114] or [3.115] |
3.4.1.1. Displacement of rod's end Υ is prescribed by [3.120]3.4.1.2. Stress at rod's end Σ is prescribed by [3.121]; 3.4.2. Case of solid-like viscoelastic body; 3.4.2.1. Determination of the displacement u in a stress relaxation test; 3.4.2.2. Case Υ = Υ0H + F; 3.4.2.3. Determination of the stress s in a stress relaxation test; 3.4.2.4. Determination of displacement u in the case of prescribed stress; 3.4.2.5. Numerical examples; 3.4.3. Case of fluid-like viscoelastic body; 3.4.3.1. Determination of the displacement u in a stress relaxation test |
3.4.3.2. Determination of the stress σ in a stress relaxation test |
|
|
|
|
|
|
Sommario/riassunto |
|
The books Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes and Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles contain various applications of fractional calculus to the fields of classical mechanics. Namely, the books study problems in fields such as viscoelasticity of fractional order, lateral vibrations of a rod of fractional order type, lateral vibrations of a rod positioned on fractional order viscoelastic foundations, diffusion-wave phenomena, heat conduction, wave propagation, forced oscilla |
|
|
|
|
|
|
|
| |