| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910793131903321 |
|
|
Autore |
Ordás Ana |
|
|
Titolo |
Gamificación en bibliotecas : el juego como inspiración / / Ana Ordás |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Barcelona, Spain : , : Editorial UOC, , [2018] |
|
©2018 |
|
|
|
|
|
|
|
|
|
ISBN |
|
84-9180-178-2 |
84-9180-177-4 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 recurso en línea (141 páginas) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Game theory |
Gamification |
Libraries - Marketing |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
|
|
|
|
|
Sommario/riassunto |
|
Según el diseñador de juegos Jesse Schell, «un juego es una actividad para resolver problemas desde una aproximación lúdica». De eso trata la gamificación, de ponerse las gafas lúdicas y enfocar los problemas reales sin perder de vista que resolverlos debe ser una experiencia significativa y divertida. Tener en cuenta los juegos y la gamificación y optar por introducirlos en las bibliotecas, o en cualquier otra organización, es aplicar una actitud lúdica para que las personas aprendan, realicen y mantengan comportamientos que les ayuden a solucionar problemas o desafíos en entornos no lúdicos. Es valorar el poder del juego como una forma de implicar a las personas en los espacios físicos y virtuales de las instituciones culturales para generar conversaciones, aprendizaje, creación y descubrimiento colectivo, convirtiéndolas en motores de transformación. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9911019259203321 |
|
|
Autore |
Gittins John C. <1938-> |
|
|
Titolo |
Multi-armed bandit allocation indices / / John Gittins, Kevin Glazebrook, Richard Weber |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Chichester, : Wiley, 2011 |
|
|
|
|
|
|
|
ISBN |
|
1-283-37409-9 |
9786613374097 |
0-470-98004-4 |
0-470-98003-6 |
|
|
|
|
|
|
|
|
Edizione |
[2nd ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (311 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
GlazebrookKevin D. <1950-> |
WeberRichard <1953-> |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Resource allocation - Mathematical models |
Mathematical optimization |
Programming (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Multi-armed Bandit Allocation Indices; Contents; Foreword; Foreword to the first edition; Preface; Preface to the first edition; 1 Introduction or exploration; Exercises; 2 Main ideas: Gittins index; 2.1 Introduction; 2.2 Decision processes; 2.3 Simple families of alternative bandit processes; 2.4 Dynamic programming; 2.5 Gittins index theorem; 2.6 Gittins index; 2.6.1 Gittins index and the multi-armed bandit; 2.6.2 Coins problem; 2.6.3 Characterization of the optimal stopping time; 2.6.4 The restart-in-state formulation; 2.6.5 Dependence on discount factor |
2.6.6 Myopic and forwards induction policies2.7 Proof of the index theorem by interchanging bandit portions; 2.8 Continuous-time bandit processes; 2.9 Proof of the index theorem by induction and interchange argument; 2.10 Calculation of Gittins indices; 2.11 Monotonicity conditions; 2.11.1 Monotone indices; 2.11.2 Monotone jobs; 2.12 History of the index theorem; 2.13 Some decision process theory; Exercises; 3 Necessary assumptions for indices; 3.1 Introduction; 3.2 Jobs; 3.3 Continuous-time jobs; 3.3.1 Definition; 3.3.2 Policies for |
|
|
|
|
|
|
|
|
|
|
|
continuous-time jobs |
3.3.3 The continuous-time index theorem for a SFABP of jobs3.4 Necessary assumptions; 3.4.1 Necessity of an infinite time horizon; 3.4.2 Necessity of constant exponential discounting; 3.4.3 Necessity of a single processor; 3.5 Beyond the necessary assumptions; 3.5.1 Bandit-dependent discount factors; 3.5.2 Stochastic discounting; 3.5.3 Undiscounted rewards; 3.5.4 A discrete search problem; 3.5.5 Multiple processors; Exercises; 4 Superprocesses, precedence constraints and arrivals; 4.1 Introduction; 4.2 Bandit superprocesses; 4.3 The index theorem for superprocesses |
4.4 Stoppable bandit processes4.5 Proof of the index theorem by freezing and promotion rules; 4.5.1 Freezing rules; 4.5.2 Promotion rules; 4.6 The index theorem for jobs with precedence constraints; 4.7 Precedence constraints forming an out-forest; 4.8 Bandit processes with arrivals; 4.9 Tax problems; 4.9.1 Ongoing bandits and tax problems; 4.9.2 Klimov's model; 4.9.3 Minimum EWFT for the M/G/1 queue; 4.10 Near optimality of nearly index policies; Exercises; 5 The achievable region methodology; 5.1 Introduction; 5.2 A simple example; 5.3 Proof of the index theorem by greedy algorithm |
5.4 Generalized conservation laws and indexable systems5.5 Performance bounds for policies for branching bandits; 5.6 Job selection and scheduling problems; 5.7 Multi-armed bandits on parallel machines; Exercises; 6 Restless bandits and Lagrangian relaxation; 6.1 Introduction; 6.2 Restless bandits; 6.3 Whittle indices for restless bandits; 6.4 Asymptotic optimality; 6.5 Monotone policies and simple proofs of indexability; 6.6 Applications to multi-class queueing systems; 6.7 Performance bounds for the Whittle index policy; 6.8 Indices for more general resource configurations; Exercises |
7 Multi-population random sampling (theory) |
|
|
|
|
|
|
Sommario/riassunto |
|
In 1989 the first edition of this book set out Gittins' pioneering index solution to the multi-armed bandit problem and his subsequent investigation of a wide of sequential resource allocation and stochastic scheduling problems. Since then there has been a remarkable flowering of new insights, generalizations and applications, to which Glazebrook and Weber have made major contributions. This second edition brings the story up to date. There are new chapters on the achievable region approach to stochastic optimization problems, the construction of performance bounds for suboptimal policies, W |
|
|
|
|
|
|
|
| |