|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910791879203321 |
|
|
Autore |
Milnor John W (John Willard), <1931-> |
|
|
Titolo |
Dynamics in one complex variable [[electronic resource] /] / by John Milnor |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, N.J., : Princeton University Press, 2006 |
|
|
|
|
|
|
|
ISBN |
|
1-283-00148-9 |
9786613001481 |
1-4008-3553-4 |
|
|
|
|
|
|
|
|
Edizione |
[3rd ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (313 p.) |
|
|
|
|
|
|
Collana |
|
Annals of mathematics studies ; ; no. 160 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Functions of complex variables |
Holomorphic mappings |
Riemann surfaces |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 277-291) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Table Of Contents -- List of Figures -- Preface to the Third Edition -- Chronological Table -- Riemann Surfaces -- Iterated Holomorphic Maps -- Local Fixed Point Theory -- Periodic Points: Global Theory -- Structure of the Fatou Set -- Using the Fatou Set to Study the Julia Set -- Appendix A. Theorems from Classical Analysis -- Appendix B. Length-Area-Modulus Inequalities -- Appendix C. Rotations, Continued Fractions, and Rational Approximation -- Appendix D. Two or More Complex Variables -- Appendix E. Branched Coverings and Orbifolds -- Appendix F. No Wandering Fatou Components -- Appendix G. Parameter Spaces -- Appendix H. Computer Graphics and Effective Computation -- References -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics |
|
|
|
|