1.

Record Nr.

UNINA9910144282503321

Titolo

Chemical synthesis using supercritical fluids [[electronic resource] /] / edited by Philip G. Jessop and Walter Leitner

Pubbl/distr/stampa

Weinheim ; ; New York, : Wiley-VCH, c1999

ISBN

1-281-76423-X

9786611764234

3-527-61368-4

3-527-61369-2

Descrizione fisica

1 online resource (503 p.)

Altri autori (Persone)

JessopPhilip G

LeitnerWalter

Disciplina

541.3

541.39

Soggetti

High pressure chemistry

Organic compounds - Synthesis

Supercritical fluids

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Chemical Synthesis Using Supercritical Fluids; Preface; Contents; Contents; List of Contributors; 1 Introduction; 1.1 Supercritical Fluids as Media for Chemical Reactions; 1.1.1 What is a Supercritical Fluid (SCF)?; 1.1.2 Practical Aspects of Reactions in Supercritical Fluids (SFRs); 1.1.3 Motivation for Use of SCFs in Modern Chemical Synthesis; 1.1.4 A Brief History of Chemical Synthesis in SCFs; 1.1.4.1 Discovery of SCFs and their Use as Solvents; 1.1.4.2 Early Examples of Chemical Reactions in SCFs; 1.1.4.3 Industrial Use of SCFs as Reaction Media; References

1.2 Phase Behavior and Solubility1.2.1 Basic Physical Properties of Supercritical Fluids; 1.2.2 Phase Behavior in High Pressure Systems; 1.2.2.1 Types of Binary Phase Diagrams; 1.2.2.2 Asymmetric Binary Mixtures; 1.2.3 Factors Affecting Solubility in Supercritical Fluids; 1.2.3.1 SCF Solvent; 1.2.3.2 Chemical Functionality of the Solute; 1.2.3.3 Temperature and Pressure Effects; References; 1.3 Physical Properties as Related to Chemical Reactions; 1.3.1 Behavior of Diffusion



Coefficients; 1.3.2 Diffusional Effects on Reactions; 1.3.3 Transition-state Theory Applied to SCFs

1.3.4 Density Dependence of Two Competing Reactions1.3.5 Solvation Effects on Reactions; 1.3.6 Conclusions; References; 2 Experimental Techniques; 2.1 High-pressure Reaction Equipment Design; 2.1.1 Introduction; 2.1.2 Basic Equipment and Components; 2.1.2.1 Design of Thick-Walled Vessels; 2.1.2.2 Closures and Connectors; 2.1.2.3 Tubing and Fittings; 2.1.2.4 Valves; 2.1.2.5 Compressors and Pumps; 2.1.2.6 Stirring and Mixing; 2.1.2.7 Optical Windows; 2.1.3 High Pressure Systems; 2.1.3.1 Single-batch High-pressure Reactors; 2.1.3.2 View Cells; 2.1.3.3 Systems for Continuous Processing

2.1.4 SummaryReferences; 2.2 Extraction and Related Separation Techniques; 2.2.1 General Aspects of Supercritical Fluids as Mass Separating Agents; 2.2.2 Extraction from Solids; 2.2.2.1 Basic Process Design; 2.2.2.2 Process Parameters; 2.2.2.3 Modeling the Extraction; 2.2.2.4 Solids in Multiple Stages and Countercurrent Operation in SFE; 2.2.2.5 Continuous Extraction of Contaminated Soil with Supercritical Water; 2.2.3 Countercurrent Multistage Extraction; 2.2.3.1 Basic Process Design; 2.2.3.2 Phase Equilibria; 2.2.3.3 Separation Analysis with Respect to Theoretical Stages

2.2.3.4 Multicomponent Process Simulation2.2.3.5 Determination of the Height (Length) of a Theoretical Stage; 2.2.3.6 Determination of Column Diameter; 2.2.4 Chromatographic Separation with Supercritical Fluids; 2.2.4.1 Design of SFC Apparatus; 2.2.4.2 Methods for Scale-up of Chromatography; 2.2.5 Conclusion; References; 2.3 Precipitation and Crystallization Techniques; 2.3.1 Introduction; 2.3.2 Thermodynamics and Phase Equilibria; 2.3.2.1 CSS, PGSS and RESS; 2.3.2.2 GASP; 2.3.3 Process Basics and Reference Schemes; 2.3.3.1 Crystallization from a Supercritical Solution (CSS)

2.3.3.2 Formation of Particles from Gas Saturated Solution (PGSS)

Sommario/riassunto

For 'better solutions' - this practical guide describes how to take advantage of supercritical fluids in chemical synthesis. Well-established in extractions and materials processing, supercritical fluids are becoming increasingly popular as media for modern chemical syntheses. Historically, the application of compressed gases has been restricted mainly to the production of bulk chemicals. In the last decade, however, research has turned to exploiting the unique properties of supercritical fluids for the synthesis of fine chemicals and specialized materials. Now that the necessary equipment is



2.

Record Nr.

UNINA9910790405203321

Autore

Smallman R. E

Titolo

Modern physical metallurgy / / R.E. Smallman, A.H.W. Ngan

Pubbl/distr/stampa

Oxford : , : Butterworth-Heinemann, , 2014

ISBN

0-08-098223-9

Edizione

[Eighth edition.]

Descrizione fisica

1 online resource (xxi, 697 pages) : illustrations

Collana

Gale eBooks

Disciplina

669/.94

Soggetti

Physical metallurgy

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Front Cover; Modern Physical Metallurgy; Copyright Page; Contents; Preface; Acknowledgement; About the authors; 1 Atoms and Atomic Arrangements; 1.1 The free atom; 1.1.1 Discrete electron states; 1.1.2 Nomenclature for the electronic states; 1.2 The periodic table; 1.3 Interatomic bonding in materials; 1.4 Bonding and energy levels; 1.5 Crystal lattices and structures; 1.6 Crystal directions and planes; 1.7 Stereographic projection; 1.8 Selected crystal structures; 1.8.1 Pure metals; 1.8.2 Diamond and graphite; 1.8.3 Coordination in ionic compounds; 1.8.4 AB-type compounds

1.9 Imperfections in crystalsFurther reading; 2 Phase Diagrams and Alloy Theory; 2.1 Introduction; 2.2 The concept of a phase; 2.3 The Phase Rule; 2.4 Stability of phases; 2.4.1 The concept of free energy; 2.4.2 Free energy and temperature; 2.4.3 Free energy and composition; 2.5 The mechanism of phase changes; 2.5.1 Kinetic considerations; 2.5.2 Nucleation in solids; 2.6 Two-phase equilibria; 2.7 Three-phase equilibria and reactions; 2.7.1 The eutectic reaction; 2.7.2 The peritectic reaction; 2.7.3 Classification of three-phase equilibria; 2.8 Intermediate phases

2.9 Limitations of phase diagrams2.10 Some key phase diagrams; 2.10.1 Copper-zinc system; 2.10.2 Iron-carbon system; 2.10.3 Copper-lead system; 2.11 Ternary phase diagrams; 2.11.1 Ternary diagrams for complete solid miscibility; 2.11.2 Ternary eutectic; 2.11.3 Ternary diagrams with solid solutions; 2.11.4 Ternary diagrams with a peritectic; 2.11.5 Ternary diagrams containing intermetallic phases; 2.12 Principles of alloy theory; 2.12.1 Primary substitutional solid



solutions; 2.12.1.1 The Hume-Rothery rules; 2.12.1.2 Size-factor effect; 2.12.1.3 Electrochemical effect

2.12.1.4 Relative valency effect2.12.1.5 The primary solid solubility boundary; 2.12.2 Interstitial solid solutions; 2.12.3 Types of intermediate phases; 2.12.3.1 Electrochemical compounds; 2.12.3.2 Size-factor compounds; 2.12.3.3 Electron compounds; 2.12.4 Order-disorder phenomena; Further reading; 3 Solidification; 3.1 Crystallization from the melt; 3.1.1 Freezing of a pure metal; 3.1.2 Homogeneous nucleation; 3.1.3 Heterogeneous nucleation; 3.2 Continuous growth; 3.3 Lateral growth; 3.4 Dendritic growth; 3.4.1 Plane-front and dendritic solidification at a cooled surface

3.4.2 Length of dendrite cores3.5 Forms of cast structure; 3.6 Gas porosity; 3.7 Segregation; 3.8 Directional solidification; 3.9 Production of metallic single crystals for research; 3.10 Coring; 3.11 Cellular microsegregation; 3.12 Zone refining; 3.13 Eutectic solidification; 3.14 Continuous casting; 3.15 Fusion welding; 3.16 Metallic glasses; 3.17 Rapid solidification processing; Further reading; 4 Introduction to Dislocations; 4.1 Concept of a dislocation; 4.1.1 Edge and screw dislocations; 4.1.2 The Burgers vector; 4.1.3 Mechanisms of slip and climb

4.2 Strain energy associated with dislocations

Sommario/riassunto

Modern Physical Metallurgy describes, in a very readable form, the fundamental principles of physical metallurgy and the basic techniques for assessing microstructure. This book enables you to understand the properties and applications of metals and alloys at a deeper level than that provided in an introductory materials course.    The eighth edition of this classic text has been updated to provide a balanced coverage of properties, characterization, phase transformations, crystal structure, and corrosion not available in other texts, and includes updated illustrations along wit