|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910789216303321 |
|
|
Autore |
Spohn Herbert <1946-> |
|
|
Titolo |
Large Scale Dynamics of Interacting Particles [[electronic resource] /] / by Herbert Spohn |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1991 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 1991.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XI, 342 p.) |
|
|
|
|
|
|
Collana |
|
Theoretical and Mathematical Physics, , 1864-5879 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Thermodynamics |
Statistical physics |
Dynamical systems |
Probabilities |
Complex Systems |
Probability Theory and Stochastic Processes |
Statistical Physics and Dynamical Systems |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Scales -- Outline -- I Classical Particles -- 1. Dynamics -- 2. States of Equilibrium and Local Equilibrium -- 3. The Hydrodynamic Limit -- 4. Low Density Limit: The Boltzmann Equation -- 5. The Vlasov Equation -- 6. The Landau Equation -- 7. Time Correlations and Fluctuations -- 8. Dynamics of a Tracer Particle -- 9. The Role of Probability, Irreversibility -- II Stochastic Lattice Gases -- 1. Lattice Gases with Hard Core Exclusion -- 2. Equilibrium Fluctuations -- 3. Nonequilibrium Dynamics for Reversible Lattice Gases -- 4. Nonequilibrium Dynamics of Driven Lattice Gases -- 5. Beyond the Hydrodynamic Time Scale -- 6. Tracer Dynamics -- 7. Stochastic Models with a Single Conservation Law Other than Lattice Gases -- 8. Non-Hydrodynamic Limit Dynamics -- References -- List of Mathematical Symbols. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book deals with one of the fundamental problems of nonequilibrium statistical mechanics: the explanation of large-scale dynamics (evolution differential equations) from models of a very large |
|
|
|
|