1.

Record Nr.

UNINA9910788961403321

Autore

Lee Tuo Yeong <1967->

Titolo

Henstock-Kurzweil integration on euclidean spaces [[electronic resource] /] / Lee Tuo Yeong

Pubbl/distr/stampa

Singapore ; ; Hackensack, N.J., : World Scientific, c2011

ISBN

1-283-23477-7

9786613234773

981-4324-59-0

Descrizione fisica

1 online resource (325 p.)

Collana

Series in real analysis ; ; v. 12

Classificazione

SK 430

SK 620

Disciplina

515.43

Soggetti

Henstock-Kurzweil integral

Lebesgue integral

Calculus, Integral

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and indexes.

Nota di contenuto

Preface; Contents; 1. The one-dimensional Henstock-Kurzweil integral; 1.1 Introduction and Cousin's Lemma; 1.2 Definition of the Henstock-Kurzweil integral; 1.3 Simple properties; 1.4 Saks-Henstock Lemma; 1.5 Notes and Remarks; 2. The multiple Henstock-Kurzweil integral; 2.1 Preliminaries; 2.2 The Henstock-Kurzweil integral; 2.3 Simple properties; 2.4 Saks-Henstock Lemma; 2.5 Fubini's Theorem; 2.6 Notes and Remarks; 3. Lebesgue integrable functions; 3.1 Introduction; 3.2 Some convergence theorems for Lebesgue integrals; 3.3 μm-measurable sets; 3.4 A characterization of μm-measurable sets

3.5 μm-measurable functions3.6 Vitali Covering Theorem; 3.7 Further properties of Lebesgue integrable functions; 3.8 The Lp spaces; 3.9 Lebesgue's criterion for Riemann integrability; 3.10 Some characterizations of Lebesgue integrable functions; 3.11 Some results concerning one-dimensional Lebesgue integral; 3.12 Notes and Remarks; 4. Further properties of Henstock-Kurzweil integrable functions; 4.1 A necessary condition for Henstock-Kurzweil integrability; 4.2 A result of Kurzweil and Jarn ́ık; 4.3 Some necessary and su cient conditions for Henstock- Kurzweil integrability



4.4 Harnack extension for one-dimensional Henstock-Kurzweil integrals4.5 Other results concerning one-dimensional Henstock- Kurzweil integral; 4.6 Notes and Remarks; 5. The Henstock variational measure; 5.1 Lebesgue outer measure; 5.2 Basic properties of the Henstock variational measure; 5.3 Another characterization of Lebesgue integrable functions; 5.4 A result of Kurzweil and Jarn ́ık revisited; 5.5 A measure-theoretic characterization of the Henstock- Kurzweil integral; 5.6 Product variational measures; 5.7 Notes and Remarks; 6. Multipliers for the Henstock-Kurzweil integral

6.1 One-dimensional integration by parts6.2 On functions of bounded variation in the sense of Vitali; 6.3 The m-dimensional Riemann-Stieltjes integral; 6.4 A multiple integration by parts for the Henstock-Kurzweil integral; 6.5 Kurzweil's multiple integration by parts formula for the Henstock-Kurzweil integral; 6.6 Riesz Representation Theorems; 6.7 Characterization of multipliers for the Henstock-Kurzweil integral; 6.8 A Banach-Steinhaus Theorem for the space of Henstock- Kurzweil integrable functions; 6.9 Notes and Remarks; 7. Some selected topics in trigonometric series

7.1 A generalized Dirichlet test7.2 Fourier series; 7.3 Some examples of Fourier series; 7.4 Some Lebesgue integrability theorems for trigonometric series; 7.5 Boas' results; 7.6 On a result of Hardy and Littlewood concerning Fourier series; 7.7 Notes and Remarks; 8. Some applications of the Henstock-Kurzweil integral to double trigonometric series; 8.1 Regularly convergent double series; 8.2 Double Fourier series; 8.3 Some examples of double Fourier series; 8.4 A Lebesgue integrability theorem for double cosine series; 8.5 A Lebesgue integrability theorem for double sine series

8.6 A convergence theorem for Henstock-Kurzweil integrals

Sommario/riassunto

The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Per