| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996199811503316 |
|
|
Titolo |
Applied psychology in criminal justice |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Huntsville, TX, : San Houston State University, College of Criminal Justice, 2005- |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Criminal justice, Administration of - Psychological aspects |
Criminal investigation - Psychological aspects |
Periodicals. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Periodico |
|
|
|
|
|
Note generali |
|
Refereed/Peer-reviewed |
Title from journal home page (viewed Oct. 14, 2005). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910788853703321 |
|
|
Autore |
Barbe Philippe |
|
|
Titolo |
Asymptotic expansions for infinite weighted convolutions of heavy tail distributions and application / / Ph. Barbe, W.P. McCormick |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , 2009 |
|
©2009 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (133 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; Number 922 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Distribution (Probability theory) - Mathematical models |
Asymptotic expansions |
Stochastic processes |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""1. Introduction""; ""1.1. Prolegomenom""; ""1.2. Mathematical overview and heuristics""; ""2. Main result""; ""2.1. Some notation""; ""2.2. Asymptotic scales""; ""2.3. The Laplace characters""; ""2.4. Smoothly varying functions of finite order""; ""2.5. Asymptotic expansion for in finite weighted convolution""; ""3. Implementing the expansion""; ""3.1. How many terms are in the expansion?""; ""3.2. [sub(*)]-Asymptotic scales and functions of class m""; ""3.3. Tail calculus: From Laplace characters to linear algebra""; ""3.4. Some examples"" |
""3.5. Two terms expansion and second order regular variation""""3.6. Some open questions""; ""4. Applications""; ""4.1. ARMA models""; ""4.2. Tail index estimation""; ""4.3. Randomly weighted sums""; ""4.4. Compound sums""; ""4.5. Queueing theory""; ""4.6. Branching processes""; ""4.7. Infinitely divisible distributions""; ""4.8. Implicit transient renewal equation and iterative systems""; ""5. Preparing the proof""; ""5.1. Properties of Laplace characters""; ""5.2. Properties of smoothly varying functions of finite order""; ""6. Proof in the positive case"" |
""6.1. Decomposition of the convolution into integral and multiplication operators""""6.2. Organizing the proof""; ""6.3. Regular variation and basic tail estimates""; ""6.4. The fundamental estimate""; ""6.5. Basic |
|
|
|
|
|
|
|
|
|
|
lemmas""; ""6.6. Inductions""; ""6.7. Conclusion""; ""7. Removing the sign restriction on the random variables""; ""7.1. Elementary properties of U[sub(H)]""; ""7.2. Basic expansion of U[sub(H)]""; ""7.3. A technical lemma""; ""7.4. Conditional expansion and removing conditioning""; ""8. Removing the sign restriction on the constants"" |
""8.1. Neglecting terms involving the multiplication operators""""8.2. Substituting H[sup((k))] and G[sup((k))] by their expansions""; ""9. Removing the smoothness restriction""; ""Appendix. Maple code""; ""Bibliography"" |
|
|
|
|
|
| |