1.

Record Nr.

UNINA9910788853603321

Autore

Mohammed Salah-Eldin <1946->

Titolo

The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations / / Salah-Eldin A. Mohammed, Tusheng Zhang, Huaizhong Zhao

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , [2008]

©2008

ISBN

1-4704-0523-7

Descrizione fisica

1 online resource (120 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 917

Disciplina

519.2

Soggetti

Stochastic partial differential equations

Stochastic integral equations

Manifolds (Mathematics)

Evolution equations

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"November 2008, volume 196, number 917 (fourth of 5 numbers )."

Nota di bibliografia

Includes bibliographical references (pages 103-105).

Nota di contenuto

""Contents""; ""Introduction""; ""Part 1. The stochastic semiflow""; ""Â1.1 Basic concepts""; ""Â1.2 Flows and cocycles of semilinear see's""; ""(a) Linear see's""; ""(b) Semilinear see's""; ""Â1.3 Semilinear spde's: Lipschitz nonlinearity""; ""Â1.4 Semilinear spde's: Non- Lipschitz nonlinearity""; ""(a) Stochastic reaction diffusion equations""; ""(b) Burgers equation with additive noise""; ""Part 2. Existence of stable and unstable manifolds""; ""Â2.1 Hyperbolicity of a stationary trajectory""; ""Â2.2 The nonlinear ergodic theorem""

""Â2.3 Proof of the local stable manifold theorem""""Â2.4 The local stable manifold theorem for see's and spde's""; ""(a) See's: Additive noise""; ""(b) Semilinear see's: Linear noise""; ""(c) Semilinear parabolic spde's: Lipschitz nonlinearity""; ""(d) Stochastic reaction diffusion equations: Dissipative nonlinearity""; ""(e) Stochastic Burgers equation: Additive noise""; ""Acknowledgments""; ""Bibliography""