|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910788849203321 |
|
|
Autore |
Guralnick Robert M. <1950-> |
|
|
Titolo |
The rational function analogue of a question of Schur and exceptionality of permutation representations / / Robert M. Guralnick, Peter Mùˆller, Jan Saxl |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , 2003 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (96 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 773 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Algebraic fields |
Arithmetic functions |
Permutation groups |
Polynomials |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Volume 162, number 773 (end of volume)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Arithmetic-Geometric Preparation""; ""2.1. Arithmetic and geometric monodromy groups""; ""2.2. Distinguished conjugacy classes of inertia generators""; ""2.3. Branch cycle descriptions""; ""2.4. The branch cycle argument""; ""2.5. Weak rigidity""; ""2.6. Topological interpretation""; ""2.7. Group theoretic translation of arithmetic exceptionality""; ""2.8. Remark about exceptional functions over finite fields""; ""Chapter 3. Group Theoretic Exceptionality""; ""3.1. Notation and definitions""; ""3.2. Primitive groups"" |
""6.3. Existence results""""Chapter 7. Sporadic Cases of Arithmetic Exceptionality""; ""7.1. G = C[sub(2)] x C[sub(2)] (Theorem 4.13(a)(iii))""; ""7.2. G = (C[sup(2)][sub(11)]) x GL[sub(2)(3) (Theorem 4.13(c)(1))""; ""7.3. G = (C[sup(2)][sub(11)]) x S[sub(3)] (Theorem 4.13(c)(ii))""; ""7.4. G = (C[sup(2)][sub(5)]) x ((C[sub(4)] x C[sub(2)]) x C[sub(2)]) (Theorem 4.13(c)(iii))""; ""7.5. G = (C[sup(2)][sub(5)]) x D[sub(12)] (Theorem 4.13(c)(iv))""; ""7.6. G = (C[sup(2)][sub(3)]) x D[sub(8)] (Theorem 4.13(c)(v))""; ""7.7. G = (C[sup(4)][sub(2)]) x (C[sup(5)] x C[sub(2)]) (Theorem 4.13(c)(vi))"" |
""7.8. G = PSL[sub(2)](8) (Theorem 4.10(a))""""7.9. G = PSL[sub(2)](9) |
|
|
|
|