|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910788846303321 |
|
|
Autore |
Chalkley Roger <1931-> |
|
|
Titolo |
Basic global relative invariants for homogeneous linear differential equations / / Roger Chalkley |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2002] |
|
©2002 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (223 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 744 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Differential equations, Linear |
Invariants |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Volume 156, number 744 (end of volume)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (pages 197-199) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
""Chapter 4. L[sub(n)] and I[sub(n,i)] as Semi-Invariants of the First Kind""""Chapter 5. V[sub(n)] and J[sub(n,i)] as Semi-Invariants of the Second Kind""; ""Chapter 6. The Coefficients of Transformed Equations""; ""6.1. Alternative formulas for c**[sub(i)](Ï?) in (1.5)""; ""6.2. The coefficients of a composite transformation""; ""6.3. Several examples""; ""6.4. Proof of an old observation""; ""6.5. Conditions for transformed equations""; ""6.6. Formulas for later reference""; ""Chapter 7. Formulas That Involve L[sub(n)](z) or I[sub(n,n)](z)"" |
""7.1. The coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""""7.2. Derivatives for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""7.3. Identities for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""Chapter 8. Formulas That Involve V[sub(n)](z) or J[sub(n,n)](z)""; ""8.1. The coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""; ""8.2. Derivatives for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0"" |
""8.3. Identities for the coefficients of (6.8) when d[sub(1)](Ï?) â?¡ d[sub(2)]((Ï?) â?¡ 0""""Chapter 9. Verification of I[sub(n,n)] â?¡ J[sub(n,n)]and Various Observations""; ""9.1. Proof for the first part of the Main Theorem in Chapter 1""; ""9.2. Global sets""; ""9.3. A fourth type of invariant: an absolute invariant""; ""9.4. Laguerre-Forsyth canonical |
|
|
|
|
|
|
|
|
|
|
forms""; ""Chapter 10. The Local Constructions of Earlier Research""; ""10.1. Standard techniques""; ""10.2. An improved computational procedure""; ""10.3. Hindrances to earlier research"" |
""Chapter 11. Relations for G[sub(i)], H[sub(i)], and L[sub(i)] That Yield Equivalent Formulas for Basic Relative Invariants"" |
|
|
|
|
|
| |