|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910788843203321 |
|
|
Autore |
Mitrea Dorina <1965-> |
|
|
Titolo |
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , 2001 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (137 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 713 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Riemannian manifolds |
Boundary value problems |
Differential equations, Elliptic - Numerical solutions |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Volume 150, number 713 (fourth of 5 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""Introduction""; ""Chapter 1. Singular integrals on Lipschitz submanifolds of codimension one""; ""Chapter 2. Estimates on fundamental solutions""; ""Chapter 3. General second-order strongly elliptic systems""; ""Chapter 4. The Dirichlet problem for the Hodge Laplacian and related operators""; ""Chapter 5. Natural boundary problems for the Hodge Laplacian in Lipschitz domains""; ""Chapter 6. Layer potential operators on Lipschitz domains""; ""Chapter 7. Rellich type estimates for differential forms"" |
""Chapter 8. Fredholm properties of boundary integral operators on regular spaces""""Chapter 9. Weak extensions of boundary derivative operators""; ""Chapter 10. Localization arguments and the end of the proof of Theorem 6.2""; ""Chapter 11. Harmonic fields on Lipschitz domains""; ""Chapter 12. The proofs of the Theorems 5.1-5.5""; ""Chapter 13. The proofs of the auxiliary lemmas""; ""Chapter 14. Applications to Maxwell's equations on Lipschitz domains""; ""Appendix A. Analysis on Lipschitz manifolds""; ""Appendix B. The connection between dâ??and dâ??Ω""; ""Bibliography"" |
|
|
|
|
|
|
|