1.

Record Nr.

UNINA9910788796003321

Titolo

Communicating mathematics : a conference in honor of Joseph A. Gallian's 65th birthday, July 16-19, 2007, University of Minnesota, Duluth, Minnesota / / Timothy Y. Chow, Daniel C. Isaksen, editors

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , [2009]

©2009

ISBN

0-8218-8158-2

0-8218-4345-1

Descrizione fisica

1 online resource (251 p.)

Collana

Contemporary mathematics, ; 479 , 0271-4132

Disciplina

510

Soggetti

Communication in mathematics - United States

Mathematics - Research - United States

Mathematics - Study and teaching - United States

Mathematics - United States - Data processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Intro -- Contents -- Preface--A journey of discovery: Orthogonal matrices and wireless communications--Probabilistic expectations on unstructured spaces--A beginner's guide to forcing--Higher order necessary conditions in smooth constrained optimization--Hamiltonian paths and hyperbolic patterns--When graph theory meets knot theory--Can an asymmetric power structure always be achieved?--McKay's canonical graph labeling algorithm--A multiplicative deformation of the Möbius function for the poset of partitions of a multiset -- Communicating, mathematics, communicating mathematics : Joe Gallian style --  Fair allocation methods for coalition games --  Sums-of-squares formulas --  Product-free subsets of groups, then and now --  Generalizations of product-free subsets --  What is a superrigid subgroup? --  1. Rigidity of Linkages --  2. The Analogous Notion in Group Theory --  3. Definition of Superrigidity --  4. Examples of Superrigid Subgroups --  5. Why Superrigidity Implies Arithmeticity --  Further Reading --  Averaging points two at a time --  Vertex algebras as twisted bi-algebras: On a theorem of Borcherds --  



1. Introduction --  2. Algebraic Preliminaries --  3. Vertex Algebras --  4. Borcherds' theorem --  5. Converse to Borcherds's theorem --  6. Examples --  References.