1.

Record Nr.

UNINA9910788744103321

Autore

Celletti A (Alessandra)

Titolo

KAM stability and celestial mechanics / / Alessandra Celletti, Luigi Chierchia

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , 2007

©2007

ISBN

1-4704-0482-6

Descrizione fisica

1 online resource (150 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; Volume 187, Number 878

Classificazione

39.23

31.81

Disciplina

521

Soggetti

Three-body problem

Celestial mechanics

Perturbation (Mathematics)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Volume 187, Number 878 (third of four numbers)."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

""Contents""; ""Chapter 1. Introduction""; ""1.1. Quasi-periodic solutions for the n-body problem""; ""1.2. A stability theorem for the Sun-Jupiter-Victoria system viewed as a restricted, circular, planar three-body problem""; ""1.3. About the proof of the Sun-Jupiter-Victoria stability theorem""; ""1.4. A short history of KAM stability estimates""; ""1.5. A section-by-section summary""; ""Chapter 2. Iso-energetic KAM Theory""; ""2.1. Notations""; ""2.2. KAM tori""; ""2.3. Newton scheme for finding iso-energetic KAM tori""; ""2.4. The KAM Map""; ""2.5. Technical Tools""

""2.6. The KAM Norm Map""""2.7. Iso-energetic KAM Theorem""; ""2.8. Iso-energetic Lindstedt series""; ""Chapter 3. The Restricted, Circular, Planar Three-body Problem""; ""3.1. The restricted three-body problem""; ""3.2. Delaunay action-angle variables for the two-body problem""; ""3.3. The restricted, circular, planar three-body problem viewed as nearly-integrable Hamiltonian system""; ""3.4. The Sun-Jupiter-Asteroid problem""; ""Chapter 4. KAM Stability of the Sun-Jupiter-Victoria Problem""

""4.1. Iso-energetic Lindstedt series for the Sun-Jupiter-Asteroid problem and choice of the initial approximate tori (u[sup((0)±)], v[sup



((0)±)], w[sup((0)±)])""""4.2. Evaluation of the input parameters of the KAM norm map associated to the approximate tori (u[sup((0)±)], v[sup((0)±)], w[sup((0)±)])""; ""4.3. Iterations of the KAM map""; ""4.4. Application of the iso-energetic KAM theorem and perpetual stability of the Sun-Jupiter-Victoria problem""; ""Appendix A. The Ellipse""; ""Appendix B. Diophantine Estimates""; ""B.1. Diophantine estimates for special quadratic numbers""

""B.2. Estimates on s[sub(p)],k(Î?)""""Appendix C. Interval Arithmetic""; ""Appendix D. A Guide to the Computer Programs""; ""Bibliography""