| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990005884990403321 |
|
|
Autore |
Siviero, Donatella |
|
|
Titolo |
Tirant lo Blanch e la tradizione medievale : echi testuali e modelli generici / Donatella Siviero |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Soveria Mannelli : Rubbettino, 1997 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Medioevo romanzo e orientale , Studi ; 9 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910788743403321 |
|
|
Autore |
Auscher Pascal |
|
|
Titolo |
On necessary and sufficient conditions for Lp-estimates of Riesz transforms associated to elliptic operators on Rn and related estimates / / Pascal Auscher |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , 2007 |
|
©2007 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (102 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; Volume 186, Number 871 |
|
|
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Singular integrals |
Littlewood-Paley theory |
Calderón-Zygmund operator |
Elliptic operators |
Semigroups |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Volume 186, Number 871 (first of five numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""Acknowledgements""; ""Introduction""; ""Notation""; ""Chapter 1. Beyond Caldero'n-Zygmund operators""; ""Chapter 2. Basic L[sup(2)] theory for elliptic operators""; ""2.1. Definition""; ""2.2. Holomorphic functional calculus on L[sup(2)]""; ""2.3. L[sup(2)] off-diagonal estimates""; ""2.4. Square root""; ""2.5. The conservation property""; ""Chapter 3. L[sup(P)] theory for the semigroup""; ""3.1. Hypercontr activity and uniform boundedness""; ""3.2. W[sup(1,p)] elliptic estimates and hypercontr activity""; ""3.3. Gradient estimates""; ""3.4. Summary"" |
""3.5. Sharpness issues""""3.6. Analytic extension""; ""Chapter 4. L[sup(p)] theory for square roots""; ""4.1. Riesz transforms on L[sup(p)]""; ""4.2. Reverse inequalities""; ""4.3. Invertibility""; ""4.4. Applications""; ""4.5. Riesz transforms and Hodge decomposition""; ""Chapter 5. Riesz transforms and functional calculi""; ""5.1. Blunck & Kunstmann's theorem""; ""5.2. Hardy-Littlewood-Sobolev estimates""; ""5.3. The Hardy-Littlewood-Sobolev-Kato diagram""; ""5.4. More on the Kato |
|
|
|
|
|
|
|
|
|
|
diagram""; ""Chapter 6. Square function estimates"" |
""6.1. Necessary and sufficient conditions for boundedness of vertical square functions""""6.2. On inequalities of Stein and Fefferman for non-tangential square functions""; ""Chapter 7. Miscellani""; ""7.1. Local theory""; ""7.2. Higher order operators and systems""; ""Appendix A. Calderon-Zygmund decomposition for Sobolev functions""; ""Appendix. Bibliography"" |
|
|
|
|
|
| |