| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910788659703321 |
|
|
Titolo |
Analyzable functions and applications : International Workshop on Analyzable Functions and Applications, June 17-21, 2002, International Centre for Mathematical Sciences, Edinburgh, Scotland / / O. Costin, Kruskal, A. Macintyre, editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2005] |
|
©2005 |
|
|
|
|
|
|
|
|
|
ISBN |
|
0-8218-7963-4 |
0-8218-5707-X |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (384 p.) |
|
|
|
|
|
|
Collana |
|
Contemporary mathematics, , 0271-4132 ; ; 373 , 0271-4132 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Asymptotic expansions |
Functions |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents -- Preface -- A singularly perturbed Riccati equation -- On global aspects of exact WKB analysis of operators admitting infinitely many phases -- Asymptotic differential algebra -- Introduction -- 1. Hardy Fields -- 2. The Field of Logarithmic-Exponential Series -- 3. H-Fields and Asymptotic Couples -- 4. Algebraic Differential Equations over H-Fields -- References -- Formally well-posed Cauchy problems for linear partial differential equations with constant coefficients -- Non-oscillating integral curves and O-minimal structures -- 1. Introduction -- 2. Definitions and examples -- 2.1 Hardy fields and o-minimal structures -- 2.2 Boshernitzan's example -- 2.3 Quasianalytic Denjoy-Carleman classes -- 3. Euler's equation -- 3.1 Euler's equation in the real plane -- 3.2 Euler's equation in the complex plane -- 3.3 Formal conjugation -- Asymptotics and singularities for a class of difference equations -- Topological construction of transseries and introduction to generalized Borel summability -- 1. Introduction -- 1.1. Abstract multiseries -- 1.2. Topology on multiseries -- 1.3. Contractive operators -- 1.4. Inductive construction of logarithm-free transseries -- 1.5. The space |
|
|
|
|
|
|
|
|
|
|
T of general transseries -- 2. Equations in T: examples -- 2.1. Multidimensional systems: transseries solutions at irregular singularities of rank one -- 3. Borel summation techniques -- 3.1. Borel summation of transseries: a first order example -- 3.2. Generalized Borel summation for rank one ODEs -- 3.3. Difference equations and PDEs -- 3.4. More general irregular singularities and multisummability -- References -- Addendum to the hyperasymptotics for multidimensional Laplace integrals -- Higher-order terms for the de Moivre-Laplace theorem -- Twisted resurgence monomials and canonical-spherical synthesis of local objects -- 1. Introduction: Object Analysis and Object Synthesis -- 1.1 The notion of Local Analytic Object -- 1.2 Object Analysis: the Bridge Equation -- 1.3 Object Synthesis: semi-formal candidates -- 1.4 Object Synthesis: from semi-formal to effective -- 2. Reminders about moulds, resurgent functions, alien derivations -- 2.1 Moulds/comoulds -- 2.2 Resurgent functions -- 2.3 Alien derivations or automorphisms. Their weights -- 2.4 Resurgence monomials -- 3. Object Analysis: six basic examples -- 3.1 Example 1: shift-like diffeomorphism -- 3.2 Example 2: Euler-like differential equation -- 3.3 Example 3: monocritical linear differential system -- 3.4 Example 4: monocritical non-linear differential system -- 3.5 Example 5: polycritical linear differential system -- 3.6 Example 6: polycritical non-linear differential system -- 4. The reverse problem: Object Synthesis -- 4.1 Standard or hyperlogarithmic resurgence monomials and monics -- 4.2 Semi-formal synthesis in Example 1 -- 4.3 Semi-formal synthesis in Example 2. |
|
|
|
|
|
| |