|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910788631603321 |
|
|
Titolo |
Advances in p-Adic and non-Archimedean analysis : Tenth International Conference, June 30-July 3, 2008, Michigan State University, East Lansing, Michigan / / Martin Berz, Khodr Shamseddine, editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2010] |
|
©2010 |
|
|
|
|
|
|
|
|
|
ISBN |
|
0-8218-8187-6 |
0-8218-4740-6 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (281 p.) |
|
|
|
|
|
|
Collana |
|
Contemporary mathematics, ; 508 , 0271-4132 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
p-adic analysis |
Topological fields |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents -- Preface -- Strict topologies on spaces of vector-valued continuous functions over non-Archimedean field -- Some subalgebras of the algebra of bounded linear operators of the one variable Tate algebra -- The ultrametric corona problem -- Vector-valued p-adic measures -- On the Clifford algebra of orthomodular spaces over Krull valued fields -- Divergence and convergence of conjugacies in non-Archimedean dynamics -- A criterion for the invertibility of Lipschitz operators on type separating spaces -- On monomial dynamical systems on the p-adic n-torus -- On the value group and norms of a Form Hilbert space -- Compact perturbations of Fredholm operators on Norm Hilbert spaces over Krull valued fields -- Applications of the p-adic Nevanlinna theory to problems of uniqueness -- Tensor products of p-adic locally convex spaces having the strongest locally convex topology -- Tensor products of p-adic measures -- p-adic arithmetic coding -- Analysis on the Levi-Civita field, a brief overview -- Criteria for non-repelling fixed points -- A p-adic q-deformation of the Weyl algebra, for q a pN-th root of unity. |
|
|
|
|
|
|
|