1.

Record Nr.

UNINA9910788618203321

Autore

Joyce Dominic D.

Titolo

A theory of generalized Donaldson-Thomas invariants / / Dominic Joyce, Yinan Song

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , 2012

©2012

ISBN

0-8218-8752-1

Descrizione fisica

1 online resource (199 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; Volume 217, Number 1020

Disciplina

516.3/52

Soggetti

Donaldson-Thomas invariants

Calabi-Yau manifolds

Sheaf theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"May 2012, Volume 217, Number 1020 (second of 4 numbers)."

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Chapter 1. Introduction --  1.1. Brief sketch of background --  1.2. Behrend functions of schemes and stacks, from chapter 4 --  1.3. Summary of the main results in chapter 5 --  1.4. Examples and applications in chapter 6 --  1.5. Extension to quivers with superpotentials in chapter 7 --  1.6. Relation to the work of Kontsevich and Soibelman [63] --  Chapter 2. Constructible functions and stack functions --  2.1. Artin stacks and (locally) constructible functions --  2.2. Stack functions --  2.3. Operators and projections --   2.4. Stack function spaces -- Chapter 3. Background material from [51-54] --  3.1. Ringel-Hall algebras of an abelian category --  3.2. (Weak) stability conditions on  --  3.3. Changing stability conditions and algebra identities --  3.4. Calabi-Yau 3-folds and Lie algebra morphisms --  3.5. Invariants and transformation laws --  Chapter 4. Behrend functions and Donaldson-Thomas theory --  4.1. The definition of Behrend functions --  4.2. Milnor fibres and vanishing cycles --  4.3. Donaldson-Thomas invariants of Calabi-Yau 3-folds. --   4.4. Behrend functions and almost closed 1-forms -- 4.5. Characterizing for Calabi-Yau 3-folds --  Chapter 5. Statements of main results --  5.1. Local description of the moduli of coherent sheaves --  5.2. Identities on Behrend functions of moduli stacks --  5.3. A Lie algebra morphism



and generalized Donaldson-Thomas invariants --  5.4. Invariants counting stable pairs, and deformation-invariance --  Chapter 6. Examples, applications, and generalizations. --   6.1. Computing and in examples 6.2. Integrality properties --  6.3. Counting dimension zero sheaves --  6.4. Counting dimension one sheaves --  6.5. Why it all has to be so complicated: an example --  6.6. Stability and invariants --  6.7. Extension to noncompact Calabi-Yau 3-folds --  6.8. Configuration operations and extended Donaldson-Thomas invariants --  Chapter 7. Donaldson-Thomas theory for quivers with superpotentials --  7.1. Introduction to quivers --  7.2. Quivers with superpotentials, and 3-Calabi-Yau categories. --   7.3. Behrend function identities, Lie algebra morphisms, and Donaldson-Thomas type invariants 7.4. Pair invariants for quivers --  7.5. Computing in examples --  7.6. Integrality of  for generic --  Chapter 8. The proof of Theorem 5.3 --  Chapter 9. The proofs of Theorems 5.4 and 5.5 --  9.1. Holomorphic structures on a complex vector bundle --  9.2. Moduli spaces of analytic vector bundles on  --  9.3. Constructing a good local atlas for near  --  9.4. Moduli spaces of algebraic vector bundles on. --   9.5. Identifying versal families of holomorphic structures and algebraic vector bundles.