|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910788289203321 |
|
|
Titolo |
Computational network theory : theoretical foundations and applications / / Edited by Matthias Dehmer, Frank Emmert-Streib, and Stefan Pickl |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany : , : Wiley-VCH Verlang GmbH & Co. KGaA, , 2015 |
|
©2015 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-69154-5 |
3-527-69151-0 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (281 p.) |
|
|
|
|
|
|
Collana |
|
Quantitative and network biology ; ; Volume 5 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Electronic commerce |
Computational intelligence |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters and index. |
|
|
|
|
|
|
|
|
Nota di contenuto |
|
Cover; Title Page; Copyright; Dedication; Contents; Color Plates; Preface; List of Contributors; Chapter 1 Model Selection for Neural Network Models: A Statistical Perspective; 1.1 Introduction; 1.2 Feedforward Neural Network Models; 1.3 Model Selection; 1.3.1 Feature Selection by Relevance Measures; 1.3.2 Some Numerical Examples; 1.3.3 Application to Real Data; 1.4 The Selection of the Hidden Layer Size; 1.4.1 A Reality Check Approach; 1.4.2 Numerical Examples by Using the Reality Check; 1.4.3 Testing Superior Predictive Ability for Neural Network Modeling |
1.4.4 Some Numerical Results Using Test of Superior Predictive Ability1.4.5 An Application to Real Data; 1.5 Concluding Remarks; References; Chapter 2 Measuring Structural Correlations in Graphs; 2.1 Introduction; 2.1.1 Solutions for Measuring Structural Correlations; 2.2 Related Work; 2.3 Self Structural Correlation; 2.3.1 Problem Formulation; 2.3.2 The Measure; 2.3.2.1 Random Walk and Hitting Time; 2.3.2.2 Decayed Hitting Time; 2.3.3 Computing Decayed Hitting Time; 2.3.3.1 Iterative Approximation; 2.3.3.2 A Sampling Algorithm for h(vi,B); 2.3.3.3 Complexity; 2.3.4 Assessing SSC |
2.3.4.1 Estimating ρ (Vq)2.3.4.2 Estimating the Significance of ρ (Vq); |
|
|
|
|