1.

Record Nr.

UNINA9910788150303321

Titolo

Modeling, characterization and production of nanomaterials : electronics, photonics and energy applications / / edited by Vinod K. Tewary and Yong Zhang

Pubbl/distr/stampa

Amsterdam, [Netherlands] : , : Woodhead Publishing, , 2015

©2015

ISBN

1-78242-235-8

Descrizione fisica

1 online resource (555 p.)

Collana

Woodhead Publishing Series in Electronic and Optical Materials ; ; Number 73

Disciplina

620.5

Soggetti

Nanostructured materials

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Front Cover; Modeling, Characterization and Production of Nanomaterials: Electronics, Photonics and Energy Applications; Copyright; Contents; List of contributors; Woodhead Publishing Series in Electronic and Optical Materials; Part One: Modeling techniques for nanomaterials; Chapter 1: Multiscale modeling of nanomaterials: recent developments and future prospects; 1.1. Introduction; 1.2. Methods; 1.2.1. Quantum mechanics; 1.2.1.1. Introduction; 1.2.1.2. Hartree-Fock theory; 1.2.1.3. Electron-correlated methods; 1.2.1.4. Density functional theory; 1.2.1.5. Other methods

1.2.2. Classical mechanics1.2.2.1. Molecular mechanics; 1.2.2.2. Molecular dynamics; 1.2.2.3. Monte Carlo; 1.2.2.4. Forcefields; 1.2.2.5. Applications of classical tools to nanomaterials; 1.2.3. Mesoscale; 1.2.3.1. Models; 1.2.3.2. Forcefields; 1.2.3.3. Potentials; 1.2.3.4. Dynamics; 1.2.3.5. Parameterization; 1.2.4. Multiscale modeling; 1.2.4.1. Hierarchical methods; 1.2.4.2. Hybrid methods; 1.2.4.3. QM/MM; 1.3. Nanomaterials; 1.3.1. Polymer nanocomposites; 1.3.2. Inorganic nanostructures; 1.3.2.1. Zeolites; 1.3.2.2. Metal-organic frameworks (MOFs); 1.3.2.3. Catalysts; 1.3.3. Soft matter

1.3.3.1. Lipids1.3.3.2. Surfactants and polymers; 1.3.3.3. Peptide assemblies; 1.4. Application examples; 1.4.1. Polymer nanodielectrics;



1.4.2. Lithium-ion batteries; 1.4.3. Reinforced resins for aerospace; 1.5. Conclusion; References; Chapter 2: Multiscale Green's functions for modeling of nanomaterials ; 2.1. Introduction; 2.1.1. Need for bridging length scales; 2.1.2. Bridging the time scales; 2.1.3. Application; 2.2. Green's function method: the basics; 2.3. Discrete lattice model of a solid; 2.4. Lattice statics Greens function; 2.5. Multiscale Green's function

2.6. Causal Green's function for temporal modeling2.7. Application to 2D graphene; 2.8. Conclusions and future work; Acknowledgments; References; Chapter 3: Numerical simulation of nanoscale systems and materials; 3.1. Introduction; 3.2. Molecular statics and dynamics: an overview; 3.3. Static calculations of strain due to interface; 3.4. Dynamic calculations of kinetic frictional properties; 3.5. Fundamental properties of dynamic ripples in graphene; 3.6. Conclusions and general remarks; Disclaimer; Acknowledgments; References; Part Two: Characterization techniques for nanomaterials

Chapter 4: TEM studies of nanostructures4.1. Introduction; 4.2. Polarity determination and stacking faults of 1D ZnO nanostructures; 4.2.1. Polarity determination in 1D ZnO nanostructures; 4.2.2. Stacking-fault-induced growth of ultrathin ZnO nanobelts; 4.3. Structure analysis of superlattice nanowire by TEM: a case of SnO2 (ZnO:Sn)n nanowire; 4.4. TEM analysis of 1D nanoheterostructure; 4.4.1. Axially heterostructured nanowires; 4.4.2. Coaxial core-shell nanowires; 4.4.2.1. Highly lattice-mismatched ZnO/ZnSe and ZnO/ZnS core-shell nanowires

4.4.2.2. Nearly lattice-matched CdSe/ZnTe core-shell nanowires