1.

Record Nr.

UNINA9910787705603321

Titolo

Geography, topography, landscape : configurations of space in Greek and Roman epic / / edited by Marios Skempis and Ioannis Ziogas

Pubbl/distr/stampa

Berlin : , : De Gruyter, , [2014]

©2014

ISBN

3-11-031531-9

Descrizione fisica

1 online resource (568 p.)

Collana

Trends in classics. Supplementary volumes, , 1868-4785 ; ; volume 22

Classificazione

FB 5875

Disciplina

880.932

Soggetti

Physical geography

Landscapes

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Front matter -- Foreword -- Contents -- Introduction: Putting Epic Space in Context -- Ethnography in the Iliad -- Thick Description -- Homer’s Social-Psychological Spaces and Places -- The Ethical Geography of Hesiod’s Works and Days -- Uncertain Geographies of Female Desire in the Hesiodic Catalogue: Atalanta -- Mapping Counterfactuality in Apollonius’ Argonautica -- Landscape Markers and Time in Quintus’ Posthomerica -- Crossing the Hydaspes -- Space and Geography in Ennius’ Annales -- From Delos to Latium -- Phenomenology of Space, Place Names and Colonization in the ‘Caieta-Circe’ Sequence of Aeneid 7 -- The Topography of Epic Narrative in Ovid’s Metamorphoses -- Ovidian Geographies in Flavian Mythological Epic -- Lucan’s Catalogues and the Landscape of War -- The Long Road to Thebes -- The Voyage of Rediscovery -- Gesine Manuwald Valerius Flaccus’ Argonautica -- Bibliography -- List of Contributors -- Index rerum et nominum -- Index locorum

Sommario/riassunto

By introducing a multifaceted approach to epic geography, the editors of the volume wish to provide a critical assessment of spatial perception, of its repercussions on shaping narrative as well as of its discursive traits and cultural contexts. Taking the genre-specific boundaries of Greco-Roman epic poetry as a case in point, a team of international scholars examines issues that lie at the heart of modern criticism on human geography. Modern and ancient discourse on space



representations revolves around the nation-shaping force of geography, the gendered dynamics of landscapes, the topography of isolation and integration, the politics of imperialism, globalization, environmentalism as well as the power of language and narrative to turn space into place. One of the major aims of the volume is to show that the world of the Classics is not just the origin, but the essence of current debates on spatial constructions and reconstructions.

2.

Record Nr.

UNINA9910830207603321

Autore

Olivier Gerard

Titolo

Thermal energy management in vehicles / / Gerard Olivier, Vincent Lemort, Georges de Pelsemaeker

Pubbl/distr/stampa

Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2023]

©2023

ISBN

1-119-25174-5

1-119-25176-1

Descrizione fisica

1 online resource (355 pages)

Collana

Automotive

Disciplina

629.256

Soggetti

Automobiles - Motors - Cooling systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- Acknowledgments -- Nomenclature List of Abbreviations -- About the Companion Website -- Introduction -- Chapter 1 Fundamentals -- 1.1 Introduction -- 1.2 Fundamental Definitions in Thermodynamics -- 1.2.1 System, Surroundings, and Universe -- 1.2.2 Properties -- 1.2.3 Process -- 1.2.4 Energy -- 1.2.5 Heat -- 1.2.6 Work -- 1.2.6.1 Mechanical Forms of Work -- 1.2.6.2 Nonmechanical Forms of Work -- 1.2.7 Enthalpy -- 1.3 Fluids -- 1.3.1 Pure and Pseudo‐Pure Fluids -- 1.3.2 Liquid-Vapor Phase Change for a Pure or Pseudo‐Pure Fluid -- 1.3.3 Computing the Properties of Pure and Pseudo‐Pure Fluids -- 1.3.3.1 Phase Rule -- 1.3.3.2 The Equations of State Relating P, T, and v (Relation Between Measurable Properties) -- 1.3.3.3 Computing Non‐Measurable Properties (u, h, and s) in General Case of Real Pure Fluids -- 1.3.3.4



Computing Non‐measurable Properties (u, h, and s) in the Specific Case of Ideal Fluids -- 1.3.4 Fluids Commonly Used in Automotive Applications -- 1.3.4.1 Oil -- 1.3.4.2 Coolant -- 1.3.4.3 Refrigerant -- 1.3.4.4 Humid Air -- 1.4 Heat Transfers -- 1.4.1 Conduction -- 1.4.2 Convection -- 1.4.2.1 Forced Convection -- 1.4.2.2 Natural Convection -- 1.4.2.3 Mixed Forced and Natural Convection -- 1.4.2.4 Sensible and Latent Heat Transfer by Convection -- 1.4.2.5 Convection Heat Transfer Rates -- 1.4.2.6 Laminar and Turbulent Regimes -- 1.4.2.7 Convection Heat Transfer Coefficients -- 1.4.3 Radiation -- 1.4.3.1 Emitted Radiation -- 1.4.3.2 Incident Radiation -- 1.4.3.3 Kirchhoff's Law and the Gray Surfaces -- 1.4.3.4 Radiation Exchange Between Surfaces -- 1.5 First Law of Thermodynamics -- 1.5.1 Closed System -- 1.5.2 Open System -- 1.5.2.1 Mass Balance -- 1.5.2.2 Energy Balance -- 1.6 Second Law of Thermodynamics -- 1.6.1 Concepts and Definitions -- 1.6.1.1 Heat Reservoir, Source, and Sink.

1.6.1.2 Heat Engines -- 1.6.1.3 Refrigerators and Heat Pumps -- 1.6.2 Kelvin Planck and Clausius Statements of the Second Law -- 1.6.3 Reversible Processes -- 1.6.4 Ideal Heat Engines, Refrigerators, and Heat Pumps -- 1.6.5 Entropy -- 1.7 Flows in Hydraulic Circuits -- 1.8 Heat Exchangers -- 1.8.1 Classification of Heat Exchangers -- 1.8.1.1 Classification According to the Mechanism of Energy Transfer -- 1.8.1.2 Classification According to the Phases of Both Fluids -- 1.8.1.3 Classification According to the Flow Arrangement -- 1.8.1.4 Classification According to the Pass Arrangement -- 1.8.1.5 Classification According to the Type of Construction -- 1.8.2 Energy Balance Across a Heat Exchanger -- 1.8.3 Performance -- 1.8.3.1 Thermal Performance -- 1.8.3.2 Hydraulic Performance -- References -- Chapter 2 Internal Combustion Engine Thermal Management -- 2.1 Introduction -- 2.2 Fundamentals of Internal Combustion Engines -- 2.2.1 Characteristics of the Internal Combustion Engines -- 2.2.2 Four‐Stroke Engine Cycle -- 2.2.3 Combustion Process in the Engines -- 2.2.3.1 Combustion -- 2.2.3.2 Spark‐Ignition Engine (SI Engine) -- 2.2.3.3 Compression‐Ignition Engine (CI Engine) -- 2.2.4 Pollutant Emissions -- 2.2.4.1 Driving Cycles and Pollutant Emissions -- 2.2.4.2 Pollutants -- 2.2.4.3 Trade‐off and Technological Levers -- 2.2.5 Energy Analysis -- 2.2.5.1 Energy Conversion Processes in Engines -- 2.2.5.2 Engine Overall Energy Balance -- 2.2.5.3 Engine Overall Energy Performance Indicators -- 2.2.6 Quantification of the Major Heat Transfers in ICEs -- 2.2.6.1 Heat Transfer Between Gases and Engine Walls -- 2.2.6.2 Heat Transfer Between Coolant and Engine Walls -- 2.2.6.3 Overall Heat Transfer Between the Gas and Coolant -- 2.2.6.4 Heat Transfer with the Surroundings -- 2.3 Engine Cooling and Heating -- 2.3.1 Purpose of Engine Cooling and Heating.

2.3.2 Working Principle of Engine Cooling and Heating Systems -- 2.3.3 Circulation of the Coolant through the Engine -- 2.3.4 Radiator -- 2.3.4.1 Purpose of the Radiator -- 2.3.4.2 Technologies of Radiators -- 2.3.4.3 Flow Configurations in Radiators -- 2.3.5 Expansion Tanks -- 2.3.6 Thermostat -- 2.3.6.1 Purpose of the Thermostat -- 2.3.6.2 Working Principle of a Thermostat -- 2.3.6.3 Technologies of Thermostats -- 2.3.7 Heating Systems -- 2.4 Oil Cooling -- 2.4.1 Purpose of Oil Cooling and Heating -- 2.4.2 Working Principle of Oil Cooling and Heating Systems -- 2.4.3 Technologies of Oil Coolers -- 2.4.3.1 Air‐to‐Oil Coolers -- 2.4.3.2 Coolant‐to‐Oil Coolers -- 2.4.4 Oil Temperature Control -- 2.5 Charge Air Cooling (CAC) -- 2.5.1 Purpose of Charge Air Cooling and Forced Induction -- 2.5.2 Working Principle and Technologies of Forced Induction -- 2.5.2.1 Turbochargers -- 2.5.2.2 Superchargers -- 2.5.2.3 Electric Superchargers -- 2.5.2.4 Compound Forced Induction -- 2.5.3 Working Principle and



Architectures of Charge Air Cooling -- 2.5.3.1 Charge Air Cooling by Air -- 2.5.3.2 Charge Air Cooling by Coolant -- 2.5.3.3 Charge Air Cooling by Refrigerant -- 2.5.4 Technologies of Charge Air Coolers -- 2.5.4.1 Air‐Cooled Charge Air Coolers -- 2.5.4.2 Water‐Cooled Charge Air Coolers -- 2.6 Exhaust Gas Recirculation (EGR) Cooling -- 2.6.1 Purpose of EGR and EGR Cooling -- 2.6.2 EGR Working Principle -- 2.6.3 Exhaust Gas Recirculation Architectures -- 2.6.3.1 High‐Pressure EGR -- 2.6.3.2 Low‐Pressure EGR -- 2.6.4 Technologies of Exhaust Gas Recirculation Coolers (EGRC) -- 2.6.4 Additional Data -- 2.6.4 Solution -- 2.7 Front‐End Module -- 2.7.1 Purpose of the Front‐End Module -- 2.7.2 Working Principle of the Front‐End Module -- 2.7.2.1 Heat Exchangers Configuration -- 2.7.2.2 Aeraulics -- 2.7.2 Solution -- 2.7.2 Results.

2.7.3 Technologies of Components in the Front‐End Module -- 2.7.3.1 Fan System -- 2.7.3.2 Active Grille Shutters -- 2.8 Engine Waste Heat Recovery -- 2.8.1 Exhaust Heat Recovery System (EHRS) -- 2.8.2 (Organic) Rankine Cycle Power Systems -- 2.8.2 Solution -- 2.8.2 Results (for question 1 and 2) -- 2.8.3 Other Investigated Technologies -- References -- Chapter 3 Cabin Climate Control -- 3.1 Introduction -- 3.2 Thermal Comfort -- 3.2.1 Definition of Thermal Comfort -- 3.2.2 Human Thermo‐Physiology -- 3.2.2.1 Homeothermy -- 3.2.2.2 Body Energy Balance -- 3.2.2.3 Skin Sensible Losses -- 3.2.2.4 Skin Latent Losses -- 3.2.2.5 Respiratory Losses -- 3.2.2.6 Criteria to Meet to Achieve Thermal Comfort -- 3.2.3 Description of Vehicle Indoor Climate -- 3.2.3.1 Mean Radiant Temperature -- 3.2.3.2 Operative Temperature -- 3.2.3.3 Equivalent Temperature -- 3.2.3.4 Local Equivalent Temperature -- 3.2.3.5 Whole Body Equivalent Temperature -- 3.2.3.6 Control of Vehicle Indoor Climate -- 3.2.3.7 Transient Evolution of the Indoor Climate -- 3.2.3.8 Air Stratification -- 3.2.4 Evaluation of Thermal Comfort -- 3.2.4.1 PMV Approach -- 3.2.4.2 Human Subject Trials -- 3.3 Cabin Thermal Loads -- 3.3.1 Outdoor Climate -- 3.3.1.1 Solar Radiation -- 3.3.1.2 Atmospheric Radiation -- 3.3.2 Energy Transfer Mechanisms Involved in a Vehicle Cabin -- 3.3.3 Heat Transfer Through the Cabin Body -- 3.3.3.1 Heat Transfers at the Cabin Body Outdoor Surface -- 3.3.3.2 Heat Transfer and Storage Through the Cabin Body Materials -- 3.3.3.3 Heat Transfers at the Cabin Body Indoor Surface -- 3.3.3.4 Heat Transfer Through the Cabin Body in the Steady‐State Regime -- 3.3.4 Heat Transfer Through the Glazing -- 3.3.4.1 Optical Properties of Glazing -- 3.3.4.2 Advanced Glazing Technologies -- 3.3.5 Ventilation -- 3.3.6 Infiltration -- 3.3.7 Internal Gains -- 3.3.7.1 Occupants.

3.3.7.2 Other Internal Gains -- 3.3.8 Other Energy Transfer Mechanisms -- 3.3.9 Lumped Modeling Approach -- 3.3.9.1 Energy Balance on the Cabin Body -- 3.3.9.2 Energy Balance on the Cabin Glazing -- 3.3.9.3 Energy Balance on the Cabin Internal Masses -- 3.3.9.4 Mass and Energy Balances on the Cabin Air, Water, and CO2 -- 3.4 Distribution of Thermal Energy Through the Cabin -- 3.4.1 HVAC Unit Components and Working Principle -- 3.4.2 Cabin Air Recirculation -- 3.4.3 HVAC Unit Operating Modes -- 3.4.3.1 Ventilation -- 3.4.3.2 Cooling -- 3.4.3.3 Heating -- 3.4.3.4 Demisting and Defrosting -- 3.4.3.5 Ventilation and Heating -- 3.4.3.6 Temperature and Flow Rate of the Air Flow Pulsed by the HVAC Unit -- 3.4.4 Cabin Air Quality -- 3.5 Production of Cooling Capacity -- 3.5.1 Working Principle of a Vapor‐Compression Refrigerator -- 3.5.1.1 Evaporator -- 3.5.1.2 Compressor -- 3.5.1.3 Condenser -- 3.5.1.4 Throttling Device -- 3.5.2 Integration of the Air‐Conditioning Loop into the Vehicle -- 3.5.3 Compressor -- 3.5.3.1 Mechanical Versus Electrical Compressors -- 3.5.3.2 Compressor Capacity -- 3.5.3.3



Piston Compressors -- 3.5.3.4 Sliding Vane Compressors -- 3.5.3.5 Scroll Compressors -- 3.5.3.6 Expression of the Compressor Displaced Mass Flow Rate -- 3.5.3.7 Expression of the Compressor Power -- 3.5.3.8 Oil Circulation Ratio -- 3.5.4 Evaporator -- 3.5.4.1 Air‐Heated Evaporators -- 3.5.4.2 Water‐Heated Evaporators ("Chillers") -- 3.5.5 Condenser -- 3.5.5.1 Air‐Cooled Condensers -- 3.5.5.2 Water‐Cooled Condensers -- 3.5.6 Throttling Device -- 3.5.6.1 Thermostatic Expansion Valve (TXV) -- 3.5.6.2 Electronic Expansion Valve (EXV) -- 3.5.6.3 Orifice Tube (OT) -- 3.5.7 Receiver, Accumulator, Drier, and Filter -- 3.5.7.1 In‐line Receiver -- 3.5.7.2 Integrated Receiver -- 3.5.7.3 Accumulator -- 3.5.8 Internal Heat Exchanger -- 3.5.9 R744 (CO2) as Working Fluid.

3.5.9.1 Internal Heat Exchanger with R744.