| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991003144059707536 |
|
|
Autore |
Fielding, Nigel G. |
|
|
Titolo |
Computer Analysis and Qualitative Research / Nigel G. Fielding and Raymond.M. Lee |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
New Technologies for Social Research |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Scienze sociali - Ricerche |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Contiene rif. bibl. (p. 190-198) e Indice |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910787243903321 |
|
|
Autore |
Fares Mario A. |
|
|
Titolo |
Natural selection : methods and applications / / Mario A. Fares, School of Genetics and Microbiology, Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Boca Raton : , : Taylor & Francis, , [2015] |
|
©2015 |
|
|
|
|
|
|
|
|
|
ISBN |
|
0-429-09506-6 |
1-4822-6373-4 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (274 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
A Science Publishers book. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters. |
|
|
|
|
|
|
Nota di contenuto |
|
Front Cover; Dedication; Preface; Contents; CHAPTER 1: The Role of Natural Selection in Evolution; CHAPTER 2: Identifying Evolution Signatures in Molecules; CHAPTER 3: Modeling Evolution of Molecular Sequences; CHAPTER 4: Identifying Natural Selection with Molecular Data; CHAPTER 5: Inferring Functional Divergence in Protein Sequences; Chapter 6: The Influence of Re combination on the Estimation of Selection from Coding Sequence Alignments; Chapter 7: Why Proteins Evolve at Different Rates: The Determinants of Proteins'Rates of Evolution |
Chapter 8: The Network Framework of Molecular EvolutionChapter 9: Molecular Coevolution:Methods and Applications; Color Plate Section; Back Cover |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book summarizes the knowledge in the field of methods to identify signatures of natural selection. A number of mathematical models and methods have been designed to identify the fingerprints of natural selection on genes and genomes. Such methods are provided in a simple and direct way so that students of different disciplines can navigate through molecular fitness landscapes using complex methods with a basic knowledge on bioinformatics. A collection of the main methods to detect selection in protein-coding genes and amino acid |
|
|
|
|
|
|
|
|
|
|
|
|
|
sequences is given at different levels of complexity, from nucleotides to proteins and molecular networks. The importance of identifying natural selection in genes and genomes through the methods described in this book transcends the bioinformatics and computational biology fields, presenting applications for experimental biologists in a straightforward and understandable way--Provided by publisher. |
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910917188603321 |
|
|
Autore |
Rankovic Nevena |
|
|
Titolo |
Recent Advances in Artificial Intelligence in Cost Estimation in Project Management |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer, , 2024 |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (422 pages) |
|
|
|
|
|
|
Collana |
|
Artificial Intelligence-Enhanced Software and Systems Engineering Series ; ; v.6 |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
RankovićDragica |
IvanovicMirjana |
LazićLjubomir |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
This book focuses on the practical application of AI tools and techniques in software project management, offering detailed theoretical explanations and practical examples of over 40 state-of-the-art machine learning and deep learning algorithms applied across each project phase, as well as in risk and resource management. |
|
|
|
|
|
|
|
| |