1.

Record Nr.

UNINA9910786927703321

Autore

Motomura Hiroshi <1953->

Titolo

Immigration outside the law / / Hiroshi Motomura

Pubbl/distr/stampa

New York, New York : , : Oxford University Press, , 2014

©2014

ISBN

0-19-938531-9

0-19-938530-0

Descrizione fisica

1 online resource (355 pages)

Classificazione

LAW032000HIS054000POL003000

Disciplina

364.1/370973

Soggetti

Noncitizens - United States

Emigration and immigration law - United States

Illegal immigration

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Immigration Outside the Law -- Introduction The Children -- 1 Undocumented or Illegal? -- 2 What State and Local Role? -- 3 Americans in Waiting? -- 4 Deciding Who Enforces -- 5 Building Communities -- 6 Legalization and the Rule of Law -- 7 Finding Answers

Sommario/riassunto

"In 1975, Texas adopted a law allowing school districts to bar children from public schools if they were in the United States unlawfully. The US Supreme Court responded in 1982 with a landmark decision, Plyler v. Doe, that kept open the schoolhouse doors, allowing these children to get the education that state law would have denied. The Court established a child's constitutional right to attend public elementary and secondary schools, regardless of immigration status. With Plyler, three questions emerged that have remained central to the national conversation about immigration outside the law: What does it mean to be in the country unlawfully? What is the role of state and local governments in dealing with unauthorized migration? Are unauthorized migrants'Americans in waiting?'Today, as the United States weighs immigration reform, debates over'illegal'or'undocumented'immigrants have become more polarized than ever. In Immigration Outside the Law, acclaimed immigration law expert Hiroshi Motomura, author of



the award-winning Americans in Waiting, offers a framework for understanding why these debates are so contentious. In a reasoned, lucid, and careful discussion, he explains the history of unauthorized migration, the sources of current disagreements, and points the way toward durable answers. In his refreshingly fair-minded analysis, Motomura explains the complexities of immigration outside the law for students and scholars, policy-makers looking for constructive solutions, and anyone who cares about this contentious issue."-from EbscoHost

2.

Record Nr.

UNINA9910746282603321

Autore

Kovalev Sergei M

Titolo

Proceedings of the Seventh International Scientific Conference Intelligent Information Technologies for Industry (IITI'23) : Volume 1

Pubbl/distr/stampa

Cham : , : Springer, , 2023

©2023

ISBN

3-031-43789-6

Edizione

[1st ed.]

Descrizione fisica

1 online resource (444 pages)

Collana

Lecture Notes in Networks and Systems Series ; ; v.776

Altri autori (Persone)

KotenkoIgor

SukhanovAndrey V

Disciplina

658.500285

Soggetti

Artificial intelligence

Automation

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Preface -- Organization -- Contents -- Invited Papers -- Intelligent Interfaces and Systems for Human-Computer Interaction -- 1 Introduction -- 2 Intelligent Synthesis -- 2.1 Video Modality -- 2.2 Audio Modality -- 2.3 Text Modality -- 2.4 Multimodality -- 3 Intelligent Analysis -- 3.1 Video Modality -- 3.2 Audio Modality -- 3.3 Text Modality -- 3.4 Multimodality -- 4 Conclusions -- References -- Three Knowledge Sources and Three Constituents of Artificial Intelligence Foundation -- 1 Introduction -- 2 Data vs. Knowledge -- 3 Data Science -- 4 From Knowledge Engineering to Knowledge Science: A Perspective -- 5 Digital Twin As a Source of Various Knowledge -- 6



Discussion: Integration and Interaction of Knowledge from Different Types of Sources -- 7 Conclusion -- References -- Machine Learning and Its Applications -- Comparative Analysis of Data Synthesis Methods for Prognostic Models Development in Cardiology -- 1 Introduction -- 2 Related works -- 3 Methods and materials -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Artificial Intelligence Approach to Palladium Nanocatalysts Diagnostics Automation -- 1 Introduction -- 2 Model-Based Training DRL Agents -- 3 Optimal Control Algorithms and Spectral Profile Analysis -- 4 Conclusion -- References -- Methodology for Detecting and Feature Selection of an Information Attack in the Process of Mediatization -- 1 Introduction -- 2 Related Work -- 3 Methodology for Detection and Feature Selection -- 3.1 Information Attack Model -- 3.2 Approach to Detection and Feature Selection -- 4 Case Study -- 5 Conclusion -- References -- Planning Maneuvers for Autonomous Driving Based on Offline Reinforcement Learning: Comparative Study -- 1 Introduction -- 2 Related Work -- 3 Background -- 3.1 Offline RL -- 3.2 Conservative Q-learning -- 4 Approach -- 4.1 CommonRoad Scenarios.

4.2 Trajectories Generation -- 5 Experiments -- 6 Conclusion -- References -- Big Five: What User Posts Say? -- 1 Introduction -- 1.1 Prerequisites for Research -- 1.2 Big Five -- 1.3 Related Work -- 2 Problem Statement -- 3 Methods -- 3.1 Description Dataset -- 3.2 Data Preprocessing -- 3.3 Used Models -- 3.4 Methodology for Evaluating the Results of Experiments -- 3.5 Results -- 4 Discussion -- 5 Conclusion -- References -- Gated Recurrent Unit Autoencoder for Fault Detection in Penicillin Fermentation Process -- 1 Introduction -- 2 Literature Review -- 3 Domain Adaptation -- 4 Deep Learning Models -- 4.1 Gated Recurrent Unit -- 4.2 GRU Based Autoencoder -- 4.3 GRU-AE Based Fault Detection -- 5 Experiments and Results -- 5.1 Dataset -- 5.2 Data Preprocessing -- 5.3 Model Training -- 5.4 Results -- 6 Conclusion -- References -- Resume Recommendation using RNN Classification and Cosine Similarity -- 1 Introduction -- 2 Related Works -- 2.1 Resume Classifier Related Works -- 2.2 Resume Recommender Related Works -- 3 The Proposed Two-Fold Algorithm Approach -- 3.1 Resume Classification -- 3.2 Experimental Results and Evaluation -- 4 Resume Recommendation -- 4.1 Similarity Function -- 4.2 Computing Similarity Function -- 5 Discussion and Conclusion -- References -- Machine Learning for Adaptive Analysis and Evaluation of Soil Slopes -- 1 Introduction -- 2 Background -- 3 Method -- 3.1 The Model of Cluster Analysis -- 3.2 BCubed Clustering Quality Metric -- 3.3 Agglomerative Clustering Algorithm -- 4 Results -- 4.1 Pre-processing of the Data Frame -- 4.2 Field Segmentation -- 4.3 Formation of ``Winners'' and ``Losers'' -- 4.4 Clustering -- 4.5 Angle Calculation -- 4.6 Quality Assessment -- 5 Proposed Decision -- 6 Conclusion and Future Work -- References.

Research on Video Pedestrian Tracking Based on the Combination of Optical Flow Method and Target Tracking Network -- 1 Introduction -- 1.1 Tracking Model Based on Traditional Methods -- 1.2 Tracking Model Based on Deep Learning Methods -- 2 Related Work -- 2.1 Siamese-Based Tracking Model -- 2.2 Self-attention -- 2.3 Variational Optical Flow Method -- 3 Transformer-Based Target Tracking Model -- 3.1 Overall Framework of SiamSA Tracking Model -- 3.2 Variational Optical Flow Model Based on Deep Learning Priors -- 3.3 Optical Flow Vector Correction Search Area -- 4 Experiments -- 4.1 Effect of Self-attention -- 4.2 Improved Optical Flow Model -- 4.3 Effect of Search Area Update Model -- 5 Conclusion -- References -- Development and Testing Intelligent Video Surveillance Systems Based on the CNN Algorithm -- 1 Introduction -- 2 Analog Overview -- 2.1 Solutions



Based on OpenCV Methods -- 2.2 Convolutional Neural Network Models -- 2.3 Determining the Accuracy of Forecast Data -- 3 Suggested Solutions -- 3.1 Object Detection Based on OpenCV and Convolution Neural Network -- 3.2 Tracking and Dynamic Identity Stack Creation Algorithm -- 4 Computer Simulation Scenarios as Datasets -- 5 Experimental Results -- 5.1 Testing the Object Detection Algorithm -- 5.2 Testing the Tracking Algorithm -- 6 Conclusion -- References -- Impact of Loss Functions on the Training of LiDAR-based Place Recognition Models -- 1 Introduction -- 2 Related Work -- 2.1 LiDAR-based Place Recognition Methods -- 2.2 Loss Functions in Place Recognition -- 3 Methodology -- 3.1 Loss Function -- 3.2 Methods -- 3.3 Training Details -- 4 Experiments -- 4.1 Datasets -- 4.2 Evaluation Metrics -- 4.3 Results and Discussion -- 5 Conclusion -- References -- Neural Attention Forests: Transformer-Based Forest Improvement -- 1 Introduction -- 2 Preliminaries.

2.1 Nadaraya-Watson Regression and Attention -- 2.2 Attention-based Random Forest -- 3 The Neural Attention Forest Architecture -- 4 The Neural Attention Forest as a Transformer -- 5 Numerical Experiments -- 6 Concluding Remarks -- References -- Audio-Visual Multi-modal Meeting Recording System -- 1 Introduction -- 1.1 Background -- 1.2 Main Contribution -- 1.3 Paper Structure -- 2 Training Strategy -- 2.1 Contrast Learning -- 2.2 Domain Generalization -- 3 Dataset -- 3.1 Dataset of AVSR -- 3.2 Dataset of SPR -- 4 Models -- 4.1 AVSR Model -- 4.2 SPR Model -- 5 Experiment -- 5.1 AVSR Model Training -- 5.2 SPR Model Training -- 5.3 Test -- 6 System Deployment -- 6.1 User Interface -- 6.2 Function Realization -- 7 Conclusion -- References -- Evolutional Modeling -- Studying the Efficiency of Parameter Scaling in Optimal Control Problems with Parallel Memetic Algorithm -- 1 Introduction -- 2 Problem Formulation -- 3 Gasoline's Catalytic Reforming Reaction -- 4 Memetic Parallel Mind Evolutionary Computation Algorithm -- 5 Computational Experiments -- 5.1 Study of the Parameter Scaling Efficiency -- 5.2 Analysis from the Chemical Perspective -- 5.3 Analysis from the Optimization Perspective -- 6 Conclusions -- References -- Canonical Representation of Transport Networks and Their Identification Based on Evolutionary Modeling -- 1 Introduction -- 2 Operations on Basic Structures of Transport Networks -- 2.1 Serial Connection -- 2.2 Adding a Feedback Loop -- 2.3 Parallel Connection -- 3 Model Parameter Identification Method -- 4 Learning Theory Methods in Transport Network Identification -- 5 Conclusion -- References -- Modified Adaptive Particle Swarm Algorithm -- 1 Introduction -- 2 Approach to the Representation of Solutions in an Algorithm based on Swarm Intelligence -- 3 Modified Algorithm for the Adaptive Behavior of a Bee Colony.

4 Hybridization of the Structure of Swarm Intelligence -- 5 Experimental Studies -- 6 Conclusion -- References -- Development and Research of Algorithms for the Synthesis of Combinational Logic Circuits Based on the Evolutionary Approach -- 1 Introduction -- 2 Problem Statement -- 3 Evolutionary Algorithm for Synthesizing Combinational Circuits -- 4 Results of Computational Experiments -- 5 Conclusions -- References -- Fuzzy Models -- Co-active of Fuzzy Temporal Ontological Models and Fuzzy Temporal Cognitive Models for the Analysis and Forecasting of Complicated Systems -- 1 Introduction -- 2 Fuzzy Temporal Ontological Model -- 3 Fuzzy Relational Temporal Cognitive Model -- 4 Forecast Assessment of the Condition and Risks of the IEMS Malfunction -- 5 Conclusion -- References -- Synthesis of Intelligent Tracking Filter with Fuzzy for Parameter Setting in Problems of Air Traffic Management Automation -- 1 Introduction -- 2 Formulation of the Problem -- 3



Construction of the Equation of the Target Motion Based on the Condition for the Maximum of the Generalized Power Function for a Discrete Time Setting -- 4 The Synthesis of the Intelligent Tracking Filter -- 5 Mathematical Simulation -- 6 Conclusion -- References -- Intelligent Decision-Making -- Making Diagnostic Decisions Based on the Assessment of Mixed Production Rules -- 1 Introduction -- 2 Development of Mixed Production Rules -- 3 Application of a Complex Approach to MPR for Diagnosing the Asynchronous Electric Motor -- 4 Conclusion -- References -- Ontology-Based Methodology for Knowledge Maps Design -- 1 Introduction -- 2 Knowledge Maps: Short Overview -- 3 Ontologies as a Conceptual Skeleton of a Knowledge Domain -- 4 Four Meta-steps to Create a Knowledge Map -- 5 Conclusion -- References -- Operating with Fuzzy Cases in Distributed Intelligent Systems -- 1 Introduction.

2 Searching for a Decision Based on Cases.

Sommario/riassunto

This volume is part of the Lecture Notes in Networks and Systems series and presents the proceedings of the Seventh International Scientific Conference on Intelligent Information Technologies for Industry (IITI'23). Held in September 2023 in Saint Petersburg, Russia, the conference gathered international experts to discuss advancements in intelligent information technologies and their applications in various industries. The collection features research on automation, artificial intelligence, and the integration of these technologies in industrial contexts. Renowned speakers presented on topics such as machine learning, data science, intelligent interfaces, and edge computing. The conference aims to foster collaboration and innovation by connecting researchers and practitioners from around the globe, contributing to the development and understanding of intelligent systems in industrial settings.