1.

Record Nr.

UNINA9910785840303321

Autore

Haraguchi Shōsuke <1943->

Titolo

A theory of stress and accent [[electronic resource] /] / Shosuke Haraguchi

Pubbl/distr/stampa

Dordrecht, : Foris, 1991

ISBN

3-11-085993-9

Edizione

[Reprint 2010]

Descrizione fisica

1 online resource (260 p.)

Collana

Studies in Generative Grammar [SGG] ; ; 37

Disciplina

414

414.6

Soggetti

Grammar, Comparative and general

Generative grammar

Accents and accentuation

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and indexes.

Nota di contenuto

Front matter -- Introduction -- Chapter 1 Accent in Tokyo Japanese -- Chapter 2 Tone, Accent and Lengthening in Nakizin -- Chapter 3 The Tonal System of the Babibu Language -- Chapter 4 Toward a Theory of Metrical Movement -- Chapter 5 Stress Clash, Stress Deletion, and Stress Movement -- Chapter 6 Stress in Cayuvava and Chugach Altiiq and Their Theoretical Implications -- Chapter 7 On the Grid simplification Principle and Parameter Settings -- Conclusion -- References -- Author Index -- Language Index -- Subject Index

Sommario/riassunto

A Theory of Stress and Accent (Studies in Generative Grammar)



2.

Record Nr.

UNINA9911020152403321

Autore

Koroliouk Dmitri

Titolo

Asymptotic and Analytic Methods in Stochastic Evolutionary Symptoms

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2023

©2023

ISBN

9781394229482

1394229488

9781394229468

1394229461

Edizione

[1st ed.]

Descrizione fisica

1 online resource (261 pages)

Altri autori (Persone)

SamoilenkoIgor

Disciplina

530.155353

Soggetti

Stochastic processes

Diffusion processes

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction -- Chapter 1. Multidimensional Models of Kac Type -- 1.1.Definitions and basic properties -- 1.2.Moments of evolutionary process -- 1.3. Systems of Kolmogorov equations -- 1.4. Evolutionary operator and theorem about weak convergence to themeasure of theWiener process -- Chapter 2. Symmetry of Markov Random Evolutionary Processes in Rn -- 2.1. Symmetrization: definition and properties -- 2.2. Examples of symmetric distributions in Rn and distributions on n + 1-hedra -- 2.2.1. Symmetricdistributions -- 2.2.2. Distributions on n + 1-hedra -- Chapter 3. Hyperparabolic Equations, Integral Equation and Distribution for Markov Random Evolutionary Processes -- 3.1. Hyperparabolic equations and methods of solving Cauchy problems -- 3.2. Analytical solution of a hyperparabolic equation with real-analytic initial conditions -- 3.3. Integral representation of the hyperparabolic equation -- 3.4.Distributionfunction of evolutionary process -- Chapter 4. Fading Markov Random Evolutionary Process -- 4.1. Definition of fading Markov random evolutionary process, its moments and limit distribution -- 4.2. Integral equation for a function from the fading



random evolutionary process -- 4.3. Equations in partial derivatives for a function of the fading random evolutionary process -- Chapter 5. Two Models of the Evolutionary Process -- 5.1.Evolution on a complex plane -- 5.2.Evolutionwithinfinitelymany directions -- 5.2.1. Symmetric case -- 5.2.2.Non-symmetric case -- Chapter 6. Diffusion Process with Evolution and Its Parameter Estimation -- 6.1.Asymptotic diffusion environment -- 6.2. Approximation of a discrete Markov process in asymptotic diffusion environment -- 6.3. Parameter estimation of the limit process -- Chapter 7. Filtration of Stationary Gaussian Statistical Experiments.

7.1. Introduction -- 7.2. Stochastic difference equation of the process of filtration -- 7.3.Coefficient of filtration -- 7.4.Equation of optimal filtration -- 7.5.Characterization of afilteredsignal -- Chapter 8. Adapted Statistical Experiments with Random Change of Time -- 8.1. Introduction -- 8.2. Statistical experiments and evolutionary processes -- 8.3. Stochastic dynamics of statistical experiments -- 8.4.Adapted statistical experiments in series scheme -- 8.5.Convergence of the adapted statistical experiments -- 8.6. Scaling parameter estimation -- 8.7. Statistical estimations of the renewal intensity parameter -- 8.7.1. Poisson's renewal process with parameter q = 2 -- 8.7.2. Stationary renewal process with delay, determined by the initial distribution function of the limit overjumps -- 8.7.3.Renewal processeswith arbitrarilydistributed renewal intervals -- Chapter 9. Filtering of Stationary Gaussian Statistical Experiments -- 9.1. Stationary statistical experiments -- 9.2. Filtering of discrete Markov diffusion -- 9.3.Thefilteringerror -- 9.4.Thefilteringempirical estimation -- Chapter 10. Asymptotic Large Deviations for Markov Random Evolutionary Process -- 10.1.Asymptotic largedeviations -- 10.2. Asymptotically stopped Markov random evolutionary process -- 10.3.Explicit representation for the normalizing function -- Chapter 11. Asymptotic Large Deviations for Semi-Markov Random Evolutionary Processes -- 11.1. Recurrent semi-Markov random evolutionary processes -- 11.2.Asymptotic largedeviations -- Chapter 12. Heuristic Principles of Phase Merging in Reliability Analysis -- 12.1.The duplicated renewal system -- 12.2.The duplicated renewal systemin the series scheme -- 12.3.Heuristic principles of the phasemerging -- 12.4. The duplicated renewal system without failure -- References -- Index -- EULA.

Sommario/riassunto

This book, 'Asymptotic and Analytic Methods in Stochastic Evolutionary Systems', authored by Dmitri Koroliouk and Igor Samoilenko, offers an in-depth analysis of stochastic evolutionary processes using asymptotic and analytic methods. It explores various models and equations such as those of the Kac type, symmetry in Markov random processes, and fading Markov processes. The text includes discussions on integral equations, diffusion processes, and statistical experiments with random changes in time. Aimed at researchers and scholars in the fields of mathematics and statistics, the book serves as a comprehensive guide for understanding complex stochastic systems, providing both theoretical foundations and practical applications.