|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910784526003321 |
|
|
Autore |
Adams Robert A. <1940-> |
|
|
Titolo |
Sobolev spaces [[electronic resource] /] / Robert A. Adams and John J.F. Fournier |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Amsterdam, : Academic Press, 2003 |
|
|
|
|
|
|
|
ISBN |
|
1-281-07246-X |
9786611072469 |
0-08-054129-1 |
1-4356-0810-0 |
|
|
|
|
|
|
|
|
Edizione |
[2nd ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (321 p.) |
|
|
|
|
|
|
Collana |
|
Pure and applied mathematics ; ; v. 140 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
510.8 s515.7 |
510/.8 s 515/.7 |
515.782 |
|
|
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front Cover; SOBOLEV SPACES; Copyright Page; CONTENTS; Preface; List of Spaces and Norms; CHAPTER 1. PRELIMINARIES; Notation; Topological Vector Spaces; Normed Spaces; Spaces of Continuous Functions; The Lebesgue Measure in Rn; The Lebesgue Integral; Distributions and Weak Derivatives; CHAPTER 2. THE LEBESGUE SPACES Lp(Ω)́; Definition and Basic Properties; Completeness of LP (Ω)́; Approximation by Continuous Functions; Convolutions and Young's Theorem; Mollifiers and Approximation by Smooth Functions; Precompact Sets in LP (Ω); Uniform Convexity; The Normed Dual of LP (Ω); Mixed-Norm LP Spaces |
Nonimbedding Theorems for Irregular DomainsImbedding Theorems for Domains with Cusps; Imbedding Inequalities Involving Weighted Norms; Proofs of Theorems 4.51-4.53; CHAPTER 5. INTERPOLATION, EXTENSION, AND APPROXIMATION THEOREMS; Interpolation on Order of Smoothness; Interpolation on Degree of Sumability; Interpolation Involving Compact Subdomains; Extension Theorems; An Approximation Theorem; Boundary Traces; CHAPTER 6. COMPACT IMBEDDINGS OF SOBOLEV SPACES; The Rellich-Kondrachov Theorem; |
|
|
|
|