1.

Record Nr.

UNINA9910784502503321

Titolo

Hierarchical modelling for the environmental sciences [[electronic resource] ] : statistical methods and applications / / edited by James S. Clark and Alan E. Gelfand

Pubbl/distr/stampa

Oxford ; ; New York, : Oxford University Press, 2006

ISBN

1-383-02994-6

1-280-90405-4

0-19-151384-9

1-4294-7043-7

Descrizione fisica

1 online resource (216 p.)

Altri autori (Persone)

ClarkJames Samuel <1957->

GelfandAlan E. <1945->

Disciplina

577.01/519542

Soggetti

Bayesian statistical decision theory

Multilevel models (Statistics)

Mathematical statistics - Data processing

Environmental sciences - Statistical methods

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 185-195) and index.

Nota di contenuto

Preface; Contents; Contributors; Part I: Introduction to hierarchical modeling; 1 Elements of hierarchical Bayesian inference; 2 Bayesian hierarchical models in geographical genetics; Part II: Hierarchical models in experimental settings; 3 Synthesizing ecological experiments and observational data with hierarchical Bayes; 4 Effects of global change on inflorescence production: a Bayesian hierarchical analysis; Part III: Spatial modeling; 5 Building statistical models to analyze species distributions

6 Implications of vulnerability to hurricane damage for long-term survival of tropical tree species: a Bayesian hierarchical analysisPart IV: Spatio-temporal modeling; 7 Spatial-temporal statistical modeling and prediction of environmental processes; 8 Hierarchical Bayesian spatio-temporal models for population spread; 9 Spatial models for the distribution of extremes; References; Index; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; U; V; W; X; Y; Z



Sommario/riassunto

'...if you are already quite well acquainted with Bayesian concepts and terminology then this book should provide an excellent guide to the application of these advanced statistical techniques within ecology.' Justin Travis, Bulletin of the British Ecological Society 2007 38:1 -