1.

Record Nr.

UNINA9910783919803321

Autore

Giachetta G

Titolo

Geometric and algebraic topological methods in quantum mechanics [[electronic resource] /] / Giovanni Giachetta & Luigi Mangiarotti, Gennadi Sardanashvily

Pubbl/distr/stampa

Singapore ; ; Hackensack, N.J., : World Scientific, c2005

ISBN

1-281-89700-0

9786611897000

981-270-126-5

Descrizione fisica

1 online resource (715 p.)

Altri autori (Persone)

MangiarottiL

SardanashviliG. A (Gennadiì† Aleksandrovich)

Disciplina

530.12

Soggetti

Quantum theory

Geometric quantization

Topology

Mathematical physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 661-681) and index.

Nota di contenuto

Preface; Contents; Introduction; Chapter 1 Commutative geometry; Chapter 2 Classical Hamiltonian system; Chapter 3 Algebraic quantization; Chapter 4 Geometry of algebraic quantization; Chapter 5 Geometric quantization; Chapter 6 Supergeometry; Chapter 7 Deformation quantization; Chapter 8 Non-commutative geometry; Chapter 9 Geometry of quantum groups; Chapter 10 Appendixes; Bibliography; Index

Sommario/riassunto

In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry's geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Ge