|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910783919803321 |
|
|
Autore |
Giachetta G |
|
|
Titolo |
Geometric and algebraic topological methods in quantum mechanics [[electronic resource] /] / Giovanni Giachetta & Luigi Mangiarotti, Gennadi Sardanashvily |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore ; ; Hackensack, N.J., : World Scientific, c2005 |
|
|
|
|
|
|
|
ISBN |
|
1-281-89700-0 |
9786611897000 |
981-270-126-5 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (715 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
MangiarottiL |
SardanashviliG. A (Gennadiì† Aleksandrovich) |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Quantum theory |
Geometric quantization |
Topology |
Mathematical physics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 661-681) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface; Contents; Introduction; Chapter 1 Commutative geometry; Chapter 2 Classical Hamiltonian system; Chapter 3 Algebraic quantization; Chapter 4 Geometry of algebraic quantization; Chapter 5 Geometric quantization; Chapter 6 Supergeometry; Chapter 7 Deformation quantization; Chapter 8 Non-commutative geometry; Chapter 9 Geometry of quantum groups; Chapter 10 Appendixes; Bibliography; Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry's geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Ge |
|
|
|
|
|
|
|