|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910780893703321 |
|
|
Autore |
Cushman Richard H. <1942-> |
|
|
Titolo |
Geometry of nonholonomically constrained systems [[electronic resource] /] / Richard Cushman, Hans Duistermaat, Jędrzej Śniatycki |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore ; ; Hackensack, NJ, : World Scientific, c2010 |
|
|
|
|
|
|
|
ISBN |
|
1-282-76167-6 |
9786612761676 |
981-4289-49-3 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (421 p.) |
|
|
|
|
|
|
Collana |
|
Advanced series in nonlinear dynamics ; ; v. 26 |
|
|
|
|
|
|
Altri autori (Persone) |
|
DuistermaatJ. J <1942-2010.> (Johannes Jisse) |
ŚniatyckiJędrzej |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Nonholonomic dynamical systems |
Geometry, Differential |
Rigidity (Geometry) |
Caratheodory measure |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 387-393) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents; Acknowledgments; Foreword; 1. Nonholonomically constrained motions; 1.1 Newton's equations; 1.2 Constraints; 1.3 Lagrange-d'Alembert equations; 1.4 Lagrange derivative in a trivialization; 1.5 Hamilton-d'Alembert equations; 1.6 Distributional Hamiltonian formulation; 1.6.1 The symplectic distribution (H,); 1.6.2 H and in a trivialization; 1.6.3 Distributional Hamiltonian vector field; 1.7 Almost Poisson brackets; 1.7.1 Hamilton's equations; 1.7.2 Nonholonomic Dirac brackets; 1.8 Momenta and momentum equation; 1.8.1 Momentum functions; 1.8.2 Momentum equations |
1.8.3 Homogeneous functions1.8.4 Momenta as coordinates; 1.9 Projection principle; 1.10 Accessible sets; 1.11 Constants of motion; 1.12 Notes; 2. Group actions and orbit spaces; 2.1 Group actions; 2.2 Orbit spaces; 2.3 Isotropy and orbit types; 2.3.1 Isotropy types; 2.3.2 Orbit types; 2.3.3 When the action is proper; 2.3.4 Stratification on by orbit types; 2.4 Smooth structure on an orbit space; 2.4.1 Differential structure; 2.4.2 The orbit space as a differential space; 2.5 Subcartesian spaces; 2.6 Stratification of the orbit space by orbit types; |
|
|
|
|