|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910780861503321 |
|
|
Autore |
Golub Gene H (Gene Howard), <1932-2007.> |
|
|
Titolo |
Matrices, moments, and quadrature with applications [[electronic resource] /] / Gene H. Golub and Gerard Meurant |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, N.J., : Princeton University Press, c2010 |
|
|
|
|
|
|
|
ISBN |
|
1-282-45801-9 |
1-282-93607-7 |
9786612458019 |
1-4008-3388-4 |
|
|
|
|
|
|
|
|
Edizione |
[Course Book] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (376 p.) |
|
|
|
|
|
|
Collana |
|
Princeton series in applied mathematics |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Matrices |
Numerical analysis |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 335-359) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Contents -- Preface -- PART 1. Theory -- Chapter 1. Introduction -- Chapter 2. Orthogonal Polynomials -- Chapter 3. Properties of Tridiagonal Matrices -- Chapter 4. The Lanczos and Conjugate Gradient Algorithms -- Chapter 5. Computation of the Jacobi Matrices -- Chapter 6. Gauss Quadrature -- Chapter 7. Bounds for Bilinear Forms uTƒ(A)v -- Chapter 8. Extensions to Nonsymmetric Matrices -- Chapter 9. Solving Secular Equations -- PART 2. Applications -- Chapter 10. Examples of Gauss Quadrature Rules -- Chapter 11. Bounds and Estimates for Elements of Functions of Matrices -- Chapter 12. Estimates of Norms of Errors in the Conjugate Gradient Algorithm -- Chapter 13. Least Squares Problems -- Chapter 14. Total Least Squares -- Chapter 15. Discrete Ill-Posed Problems -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary |
|
|
|
|