1.

Record Nr.

UNINA9910793388603321

Autore

Chen Jianyu

Titolo

Wastewater treatment : application of new functional materials / / Jianyu Chen [and three others]

Pubbl/distr/stampa

Berlin, Germany ; ; Boston : , : De Gruyter

Beijing, China : , : China Environment Publishing Group, , [2018]

©2018

ISBN

3-11-054298-6

3-11-054438-5

Descrizione fisica

1 online resource (324 pages) : illustrations

Altri autori (Persone)

China Environment Publishing Group

Disciplina

628.43

Soggetti

Water - Purification - Materials

Sewage - Purification - Materials

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Frontmatter -- Foreword -- Contents -- 1. Prolegomenon -- 2. Preparation and modification of artificial zeolite by fly ash -- 3. Preparation technology of functional ceramsite -- 4. Preparation and application of montmorilloniteloaded nano-iron material -- 5. Application of functional materials in permeability reactive barriers technology -- 6. Application of functional materials in constructed wetland -- 7. Application of functional materials in biological aerated filter -- 8. The safety assessment and resource utilization of new functional materials -- Index

Sommario/riassunto

This book describes the research results and applications of functional zeolite, functional ceramsite, modified montmorillonite and other functional materials in water purification areas. With abundant project experiences, the book is an essential reference for researchers and PhD students in environmental science, material science, environmental chemistry, as well as industrial engineers.



2.

Record Nr.

UNINA9910779823603321

Autore

Baldi Pierre

Titolo

Bioinformatics : the machine learning approach / / Pierre Baldi, Sren Brunak

Pubbl/distr/stampa

Cambridge, Massachusetts : , : MIT Press, , c2001

[Piscataqay, New Jersey] : , : IEEE Xplore, , [2001]

ISBN

0-262-30740-5

1-282-09608-7

9786612096082

0-262-25570-7

0-585-44466-8

Edizione

[2nd ed.]

Descrizione fisica

1 online resource (477 p.)

Collana

Adaptive computation and machine learning series

Altri autori (Persone)

BrunakSren

Disciplina

572.8

Soggetti

Bioinformatics

Molecular biology - Computer simulation

Molecular biology - Mathematical models

Neural networks (Computer science)

Machine learning

Markov processes

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"A Bradford book."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Contents; Series Foreword; Preface; 1 Introduction; 2 Machine-Learning Foundations: The Probabilistic Framework; 3 Probabilistic Modeling and Inference: Examples; 4 Machine Learning Algorithms; 5 Neural Networks: The Theory; 6 Neural Networks: Applications; 7 Hidden Markov Models: The Theory; 8 Hidden Markov Models: Applications; 9 Probabilistic Graphical Models in Bioinformatics; 10 Probabilistic Models of Evolution: Phylogenetic Trees; 11 Stochastic Grammars and Linguistics; 12 Microarrays and Gene Expression; 13 Internet Resources and Public Databases; A Statistics

B Information Theory, Entropy, and Relative EntropyC Probabilistic Graphical Models; D HMM Technicalities, Scaling, Periodic Architectures, State Functions, and Dirichlet Mixtures; E Gaussian



Processes, Kernel Methods, and Support Vector Machines; F Symbols and Abbreviations; References; Index

Sommario/riassunto

An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding rapidly. Bioinformatics is the development and application of computer methods for management, analysis, interpretation, and prediction, as well as for the design of experiments. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory, which is the situation in molecular biology. The goal in machine learning is to extract useful information from a body of data by building good probabilistic models--and to automate the process as much as possible.In this book Pierre Baldi and Soren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data. The book is aimed both at biologists and biochemists who need to understand new data-driven algorithms and at those with a primary background in physics, mathematics, statistics, or computer science who need to know more about applications in molecular biology.This new second edition contains expanded coverage of probabilistic graphical models and of the applications of neural networks, as well as a new chapter on microarrays and gene expression. The entire text has been extensively revised.