|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910778216403321 |
|
|
Autore |
Gasqui Jacques |
|
|
Titolo |
Radon transforms and the rigidity of the Grassmannians [[electronic resource] /] / Jacques Gasqui and Hubert Goldschmidt |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, N.J., : Princeton University Press, 2004 |
|
|
|
|
|
|
|
ISBN |
|
1-282-15898-8 |
9786612158988 |
1-4008-2617-9 |
|
|
|
|
|
|
|
|
Edizione |
[Course Book] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (385 p.) |
|
|
|
|
|
|
Collana |
|
Annals of mathematics studies ; ; no. 156 |
|
|
|
|
|
|
Altri autori (Persone) |
|
GoldschmidtHubert <1942-> |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Radon transforms |
Grassmann manifolds |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [357]-361) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter I. Symmetric Spaces and Einstein Manifolds -- Chapter II. Radon Transforms on Symmetric Spaces -- Chapter III. Symmetric Spaces of Rank One -- Chapter IV. The Real Grassmannians -- Chapter V. The Complex Quadric -- Chapter VI. The Rigidity of the Complex Quadric -- Chapter VII. The Rigidity of the Real Grassmannians -- Chapter VIII. The Complex Grassmannians -- Chapter IX. The Rigidity of the Complex Grassmannians -- Chapter X. Products of Symmetric Spaces -- References -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies |
|
|
|
|