|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910778201803321 |
|
|
Autore |
Dreyfus Stuart E |
|
|
Titolo |
Dynamic programming and the calculus of variations / / Stuart E. Dreyfus |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York : , : Academic Press, , 1965 |
|
|
|
|
|
|
|
ISBN |
|
1-282-28924-1 |
9786612289248 |
0-08-095527-4 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xix, 248 pages) : illustrations |
|
|
|
|
|
|
Collana |
|
Mathematics in science and engineering ; ; 21 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Calculus of variations |
Dynamic programming |
Programming (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front Cover; Dynamic Programming and the Calculus of Variations; Copyright Page; Contents; Preface; Chapter I. Discrete Dynamic Programming; 1. Introduction; 2. An Example of a Multistage Decision Process Problem; 3. The Dynamic Programming solution of the Example; 4. The Dynamic Programming Formalism; 5. Two Properties of the Optimal Value Function; 6. An Alternative Method of Solution; 7. Modified Properties of the Optimal Value Function; 8. A Property of Multistage Decision Processes; 9. Further Illustrative Examples; 10. Terminal Control Problems; 11. Example of a Terminal Control Problem |
12. Solution of the Example; 13. Properties of the Solution of a Terminal Control Problem; 14. Summary; Chapter II. The Classical Variational Theory; 1. Introduction; 2. A Problem; 3. Admissible Solutions; 4. Functions; 5. Functionals; 6. Minimization and Maximization; 7. Arc-Length; 8. The Simplest General Problem; 9. The Maximum-Value Functional; 10. The Nature of Necessary Conditions; 11. Example; 12. The Nature of Sufficient Conditions; 13. Necessary and Sufficient Conditions; 14. The Absolute Minimum of a Functional; 15. A Relative Minimum of a Function |
16. A Strong Relative Minimum of a Functional; 17. A Weak Relative |
|
|
|
|