|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910778097803321 |
|
|
Autore |
Druet Olivier <1976-> |
|
|
Titolo |
Blow-up theory for elliptic PDEs in Riemannian geometry [[electronic resource] /] / Olivier Druet, Emmanuel Hebey, Frédéric Robert |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, N.J., : Princeton University Press, c2004 |
|
|
|
|
|
|
|
ISBN |
|
1-282-08723-1 |
1-282-93537-2 |
9786612935374 |
9786612087233 |
1-4008-2616-0 |
|
|
|
|
|
|
|
|
Edizione |
[Course Book] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (227 p.) |
|
|
|
|
|
|
Collana |
|
Mathematical Notes ; ; 45 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
HebeyEmmanuel <1964-> |
RobertFrédéric <1974-> |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Calculus of variations |
Differential equations, Nonlinear |
Geometry, Riemannian |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [213]-218). |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Contents -- Preface -- Chapter 1. Background Material -- Chapter 2. The Model Equations -- Chapter 3. Blow-up Theory in Sobolev Spaces -- Chapter 4. Exhaustion and Weak Pointwise Estimates -- Chapter 5. Asymptotics When the Energy Is of Minimal Type -- Chapter 6. Asymptotics When the Energy Is Arbitrary -- Appendix A. The Green's Function on Compact Manifolds -- Appendix B. Coercivity Is a Necessary Condition -- Bibliography |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Elliptic equations of critical Sobolev growth have been the target of investigation for decades because they have proved to be of great importance in analysis, geometry, and physics. The equations studied here are of the well-known Yamabe type. They involve Schrödinger operators on the left hand side and a critical nonlinearity on the right hand side. A significant development in the study of such equations occurred in the 1980's. It was discovered that the sequence splits into a solution of the limit equation--a finite sum of bubbles--and a rest that converges strongly to zero in the Sobolev space consisting of square |
|
|
|
|