1.

Record Nr.

UNINA9910778070403321

Autore

Kinoshita Shuichi <1949->

Titolo

Structural colors in the realm of nature [[electronic resource] /] / Shuichi Kinoshita

Pubbl/distr/stampa

Singapore ; ; Hackensack, NJ, : World Scientific, c2008

ISBN

981-270-975-4

Descrizione fisica

1 online resource (368 p.)

Disciplina

591.472

Soggetti

Animals - Color

Structural colors

Animal pigments

Plants - Color

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 265-285) and indexes.

Nota di contenuto

1. Introduction. 1.1. What is structural color? 1.2. Historical overview -- 2. Fundamentals of structural coloration. 2.1. Fundamentals of properties of light. 2.2. Thin-film interference. 2.3. Multilayer interference. 2.4. Diffraction of light and diffraction grating. 2.5. Photonic crystals. 2.6. Light scattering -- 3. Butterflies and moths. 3.1. General descriptions. 3.2. Morpho butterflies. 3.3. Overview of the structural coloration in butterflies and moths -- 4. Beetles and other insects. 4.1. Overview. 4.2. Beetles. 4.3. Damselflies and dragonflies. 4.4. Shield bugs and cicadas. 4.5. Other insects -- 5. Birds. 5.1. Overview. 5.2. Peacocks, pheasants, and ducks. 5.3. Hummingbirds. 5.4. Trogons. 5.5. Pigeons. 5.6. Non-iridescent colorations - kingfishers, parakeets, cotingas, and jays -- 6. Fish. 6.1. General description. 6.2. Static iridophores. 6.3. Motile iridophores. 6.4. Motile iridophores -- 7. Plants -- 8. Miscellaneous. 8.1. Shells. 8.2. Spiders. 8.3. Marine animals -- 9. Mathematical background. 9.1. Calculations of multilayer reflection. 9.2. Model for Morpho butterfly scale. 9.3. Antireflection effect. 9.4. Average refractive index. 9.5. Cholesteric liquid crystal.

Sommario/riassunto

Structural colorations originate from self-organized microstructures, which interact with light in a complex way to produce brilliant colors



seen everywhere in nature. Research in this field is extremely new and has been rapidly growing in the last 10 years, because the elaborate structures created in nature can now be fabricated through various types of nanotechnologies. Indeed, a fundamental book covering this field from biological, physical, and engineering viewpoints has long been expected.Coloring in nature comes mostly from inherent colors of materials, though it sometimes has a purely p