|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910777952303321 |
|
|
Titolo |
Topics in classical analysis and applications in honor of Daniel Waterman [[electronic resource] /] / editors, Laura De Carli, Kazaros Kazarian, Mario Milman |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hackensack, N.J., : World Scientific, c2008 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (204 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
De CarliLaura <1962-> |
KazarianKazaros |
MilmanMario |
WatermanDaniel |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Mathematical analysis |
Functional analysis |
Fourier series |
Orthogonal polynomials |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface; CONTENTS; My Academic Life D. Waterman; REMINISCENCES; RESEARCH; High Indices; Reflexivity and Summability; Harmonic Analysis; Change of Variable; Fourier Series and Generalized Variation; Representation of Functions, Orthogonal Series; Real Analysis; Summability; Survey Papers; PUBLICATIONS; Papers; Books; DOCTORAL STUDENTS; Reminiscences edited by L. Lardy, J. Troutman (with contributions by L. D'Antonio, G. T. Cargo, Ph. T. Church, D. Dezern, G. Gasper, P. Pierce, E. Poletsky, M. Schramm, F. Prus-Wisniowski, P. Schembari); On Concentrating Idempotents, A Survey J. Marshall Ash |
1. From Operators on L2 (Z) to Concentration1.1. Definitions; 1.2. Relating classes of operators; 1.3. A surprising connection; 1.4. Results for L2 Concentration; 1.5. Quantitative results for L2 concentration; 2. A Paper 20 Years in the Making; 2.1. The early years; 2.2. On the virtues of procrastination; 3. The Future; 3.1. A segue; 3.2. The L1 concentration question; 3.3. A conjecture about operators; References; Variants of a Selection Principle for Sequences of Regulated and Non- |
|
|
|
|
|
|
|
|
|
|
|
Regulated Functions V. V. Chistyakov, C. Maniscalco, Y. V. Tretyachenko |
1. Regulated Functions and Selection Principles2. Main Results; 3. Properties of N(ε, f, T) for Metric Space Valued Functions; 4. Functions with Values in a Metric Space: Proofs; 5. Functions with Values in a Metric Semigroup; 6. Functions with Values in a Re.exive Separable Banach Space; Acknowledgments; References; Local Lp Inequalities for Gegenbauer Polynomials L. De Carli; 1. Introduction; 2. Preliminaries; 2.1. Four useful Lemmas; 3. Most of the Proofs; References; General Monotone Sequences and Convergence of Trigonometric Series M. Dyachenko, S. Tikhonov; 1. Introduction |
2. Uniform and Lp-Convergence3. Convergence Almost Everywhere: One-Dimensional Series; 4. Convergence Almost Everywhere: Multiple Series; 5. Concluding Remarks; Acknowledgments; References; Using Integrals of Squares of Certain Real-Valued Special Functionsto Prove that the P ́olya Ξ(z) Function, the Functions Kiz(a), a > 0,and Some Other Entire Functions Having Only Real ZerosG. Gasper; 1. Introduction; 2. Reality of the Zeros of the Functions Kiz(a) When a > 0; 3. Reality of the Zeros of the Functions Ξ(z) and Fa,c(z); Acknowledgment; References |
Functions Whose Moments Form a Geometric Progression M. E. H. Ismail, X. Li1. Introduction; 2. Proofs; References; Characterization of Scaling Functions in a Frame MultiresolutionAnalysis in H2GK. S. Kazarian, A. San Antol ́ın; 1. Introduction; 2. Spaces H2G; 2.1. A-invariant sets; 3. Characterization of Scaling Functions of an FMRA in H2G; 3.1. Definitions and Preliminary results; 3.2. Characterization of scaling functions of an H2G -FMRA and other cases; 4. On the Existence of H2G -MRA and H2G -FMRA; References; An Abstract Coifman-Rochberg-Weiss Commutator Theorem J. Martin, M. Milman |
1. Introduction |
|
|
|
|
|
|
Sommario/riassunto |
|
This book covers a wide range of topics, from orthogonal polynomials to wavelets. It contains several high-quality research papers by prominent experts exploring trends in function theory, orthogonal polynomials, Fourier series, approximation theory, theory of wavelets and applications. The book provides an up-to-date presentation of several important topics in Classical and Modern Analysis. The interested reader will also be able to find stimulating open problems and suggestions for future research. |
|
|
|
|
|
|
|
| |