1.

Record Nr.

UNINA9910777833803321

Autore

Grünwald Peter D

Titolo

The minimum description length principle / / Peter D. Grünwald

Pubbl/distr/stampa

Cambridge, Mass., : MIT Press, ©2007

ISBN

1-282-09635-4

9786612096358

0-262-25629-0

1-4294-6560-3

Descrizione fisica

1 online resource (736 p.)

Collana

Adaptive computation and machine learning

Disciplina

003/.54

Soggetti

Minimum description length (Information theory)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. [651]-673) and indexes.

Nota di contenuto

Contents; List of Figures; Series Foreword; Foreword; Preface; PART I - Introductory Material; 1 - Learning, Regularity, and Compression; 2 - Probabilistic and Statistical Preliminaries; 3 - Information-Theoretic Preliminaries; 4 - Information-Theoretic Properties of Statistical Models; 5 - Crude Two-Part Code MDL; PART II - Universal Coding; 6 - Universal Coding with Countable Models; 7 - Parametric Models: Normalized Maximum Likelihood; 8 - Parametric Models: Bayes; 9 - Parametric Models: Prequential Plug-in; 10 - Parametric Models: Two-Part; 11 - NMLWith Innite Complexity

12 - Linear RegressionPART III - Refined MDL; 14 - MDL Model Selection; 15 - MDL Prediction and Estimation; 16 - MDL Consistency and Convergence; 17 - MDL in Context; PART IV - Additional Background; 18 - The Exponential or "Maximum Entropy" Families; 19 - Information-Theoretic Properties of Exponential Families; References; List of Symbols; Subject Index

Sommario/riassunto

A comprehensive introduction and reference guide to the minimum description length (MDL) Principle that is accessible to researchers dealing with inductive reference in diverse areas including statistics, pattern classification, machine learning, data min.