1.

Record Nr.

UNISOBSOBE00072228

Autore

Pedrazzi, Cesare

Titolo

4: Scritti di diritto penale dell'economia : disciplina penale dei mercati, diritto penale bancario, diritto penale industriale, diritto penale fallimentare, varia / Cesare Pedrazzi

Pubbl/distr/stampa

Milano, : Giuffrè, 2003

ISBN

88-14-10139-6

Descrizione fisica

VI, 1095 p. ; 24 cm

Collana

Università degli Studi di Milano - Facoltà di Giurisprudenza : Pubblicazioni dell'Istituto di Diritto Penale e Processuale penale ; 34

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910777501403321

Titolo

Least squares support vector machines [[electronic resource] /] / Johan A.K. Suykens ... [et al.]

Pubbl/distr/stampa

River Edge, NJ, : World Scientific, 2002

ISBN

981-277-665-6

Descrizione fisica

1 online resource (308 p.)

Altri autori (Persone)

SuykensJohan A. K

Disciplina

006.3/1

Soggetti

Machine learning

Algorithms

Kernel functions

Least squares

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Contents               ; Preface              ; Chapter 1 Introduction                            



; 1.1 Multilayer perceptron neural networks                                                ; 1.2 Regression and classification                                        ; 1.3 Learning and generalization                                      ; 1.3.1 Weight decay and effective number of parameters                                                            ; 1.3.2 Ridge regression                             ; 1.3.3 Bayesian learning

1.4 Principles of pattern recognition                                            1.4.1 Bayes rule and optimal classifier under Gaussian assumptions                                                                         ; 1.4.2 Receiver operating characteristic                                              ; 1.5 Dimensionality reduction methods                                           ; 1.6 Parametric versus non-parametric approaches and RBF networks

1.7 Feedforward versus recurrent network models                                                      Chapter 2 Support Vector Machines                                        ; 2.1 Maximal margin classification and linear SVMs                                                        ; 2.1.1 Margin                   ; 2.1.2 Linear SVM classifier: separable case                                                  ; 2.1.3 Linear SVM classifier: non-separable case                                                      ; 2.2 Kernel trick and Mercer condition

2.3 Nonlinear SVM classifiers                                    2.4 VC theory and structural risk minimization                                                     ; 2.4.1 Empirical risk versus generalization error                                                       ; 2.4.2 Structural risk minimization                                         ; 2.5 SVMs for function estimation                                       ; 2.5.1 SVM for linear function estimation

2.5.2 SVM for nonlinear function estimation                                                  2.5.3 VC bound on generalization error                                             ; 2.6 Modifications and extensions                                       ; 2.6.1 Kernels                    ; 2.6.2 Extension to other convex cost functions                                                     ; 2.6.3 Algorithms                       ; 2.6.4 Parametric versus non-parametric approaches

Chapter 3 Basic Methods of Least Squares Support Vector Machines

Sommario/riassunto

This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics.  The framework is further extended towards unsupervised learning by considering P