1.

Record Nr.

UNINA9910768495103321

Autore

Lens Piet

Titolo

Algal Systems for Resource Recovery from Waste and Wastewater

Pubbl/distr/stampa

London : , : IWA Publishing, , 2023

©2023

Edizione

[1st ed.]

Descrizione fisica

1 online resource (266 pages)

Collana

Integrated Environmental Technology Series

Altri autori (Persone)

KhandelwalAmitap

Disciplina

628.35

Soggetti

Land treatment of wastewater

Resource recovery facilities

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Cover -- Contents -- Preface -- List of Contributors -- Part 1: Process Fundamentals -- Chapter 1 :  Algal systems for resource recovery from waste and wastewater -- 1.1 Process Fundamentals -- 1.2 Algal-Based Wastewater Treatment -- 1.3 Valorization of Algal Biomass by Integrating with Different Technologies -- 1.4 Algal Biotechnology -- References -- Chapter 2 :  Metabolic modelling of microalgae for wastewater treatment -- 2.1     Introduction -- 2.2     Main Metabolic Pathways -- 2.2.1     Photosynthesis -- 2.2.2     Glycolysis and pentose phosphate pathway -- 2.2.3     Tricarboxylic acid cycle -- 2.2.4     Glyoxylate shunt -- 2.2.5     Lipid biosynthesis -- 2.3     Genome-Scale Metabolic Models -- 2.4     Modelling Metabolic Networks -- 2.5     Tools for Steady-State Conditions -- 2.5.1     Elementary flux modes -- 2.5.1.1     Mathematical construction of EFMs -- 2.5.1.2     Minimal generating sets and EFM reduction -- 2.5.2     Flux balance analysis -- 2.6     Metabolic Networks Reduction -- 2.6.1     The DRUM framework -- 2.7     Case Study: Microalgae Cultivation -- 2.7.1     Introduction: volatile fatty acid -- 2.7.2     Determination of the subnetworks and accumulating metabolites -- 2.7.3     Derivation of MR -- 2.7.4     Choice of kinetic model -- 2.7.5     Model calibration and validation -- 2.7.6     Example of application: optimization of waste treatment time -- 2.8     Conclusion -- References -- Chapter 3 :  Wastewater treatment using



microalgal-bacterial consortia in the photo-activated sludge process -- 3.1 Microalgal-Bacterial Consortia -- 3.1.1     Use of microalgal-bacterial consortia in environmental technologies -- 3.1.2     Interactions within microalgal-bacterial consortia -- 3.1.3     Nutrient removal by microalgal-bacterial consortia -- 3.1.4     Microalgal-bacterial systems and configurations.

3.1.5     Limiting and operational conditions of microalgal-bacterial photobioreactors -- 3.1.5.1     Light -- 3.1.5.2     pH -- 3.1.5.3     Hydraulic retention time -- 3.1.5.4     Solid retention time -- 3.2 Advantages of Microalgal-Bacterial Consortia for Ammonium Removal -- 3.2.1     Advantages on ammonium removal rates -- 3.2.2     Operational conditions and area requirement -- 3.2.3     Photo-oxygenation and algal harvesting -- 3.3 Microalgal-Bacterial Modelling -- 3.4 Integration of Photoactivated Sludge in Wastewater Treatment Concepts -- 3.5 Conclusions -- References -- Chapter 4 :  Macroalgae biorefinery and its role in achieving a circular economy -- 4.1 Introduction -- 4.2 Macroalgae Species -- 4.2.1     Green algae -- 4.2.2     Brown algae -- 4.2.2.1      Laminaria  sp. -- 4.2.2.2      Sargassum  sp. -- 4.3 Biomaterials and Bioproducts from Macroalgae -- 4.4 Biofuels from Macroalgae -- 4.4.1     Biogas -- 4.4.2     Biohydrogen -- 4.4.3     Biohythane -- 4.4.4     Bioethanol and biobutanol -- 4.4.4.1     Acetone-butanol-ethanol fermentation -- 4.4.4.2     Biobutanol -- 4.4.4.3     Bioethanol -- 4.5 Macroalgal Biorefineries -- 4.5.1     Biorefinery concepts -- 4.5.2     Key processes -- 4.5.2.1     Anaerobic digestion -- 4.5.2.2     Reactor design -- 4.5.3     Key challenges of macroalgal biorefineries -- 4.6 Conclusion -- References -- Part 2: Algae-Based Wastewater Treatment -- Chapter 5 :  Wastewater treatment by microalgae-based processes -- 5.1 Introduction -- 5.2 Current Status of Microalgae-Related Wastewater Treatment Processes -- 5.2.1     Biology of microalgae-bacteria consortia -- 5.2.2     Engineering of photobioreactors -- 5.2.3     Harvesting and processing of the biomass -- 5.3 Major Challenges of Microalgae-Related Wastewater Treatment Processes -- 5.3.1     Improvement of biological systems.

5.3.2     Allocation and implementation of large-scale facilities -- 5.3.3     Optimal operation of processes -- 5.3.4     Develop valuable applications of microalgae biomass -- 5.4 Relevance of Developing Microalgae-Related Wastewater Treatment Processes -- 5.4.1     Improvement of sustainability of wastewater treatment -- 5.4.2     Distributed wastewater treatment -- 5.4.3     Reuse of effluents in agriculture -- Acknowledgements -- References -- Chapter 6 :  Microalgae-methanotroph cocultures for carbon and nutrient recovery from wastewater -- 6.1 Background -- 6.2 Overview of Microalgae-Methanotroph Cocultures: A Promising W2V Platform for Wastewater Treatment -- 6.3 Experimental and Computational Tools for Real-Time Characterization of the  Microalgae-Methanotroph Cocultures -- 6.3.1     Accurate measurement of gas component uptake and production rates in bioconversion -- 6.3.2     Quantitative characterization of microalgae-methanotroph cocultures -- 6.4 Semi-Structured Kinetic Modeling of the Coculture -- 6.5 Integrated Nutrient Recovery and Mitigation of Greenhouse Gas Emissions from  Wastewater Using Microalgae-Methanotroph Cocultures -- 6.5.1     Choice of a suitable biocatalyst -- 6.5.2     Coculture tolerance to contaminants in raw biogas -- 6.5.3     Freshwater consumption required by wastewater treatment -- 6.5.4     Pretreatment of AD effluent -- 6.5.5     Advantage of the coculture over sequential single cultures in carbon and nutrient recovery -- 6.6 Next-Generation Photobioreactors -- 6.7 Outlook and Conclusion -- References -- Part 3: Integration with Other



Technologies -- Chapter 7 :  Microalgae cultivation in bio-electrochemical systems -- 7.1 Introduction -- 7.2 Use of Algae in MFCs -- 7.2.1     Algae as primary producers -- 7.2.2     Algae metabolism -- 7.2.3     Large-scale microalgae cultivation -- 7.3 Role of Algae in PMFCs.

7.3.1     Algal species tested in MFC cathode compartment -- 7.3.2     Mechanism of bioelectricity generation in PMFCs -- 7.4 PMFC Design Parameters -- 7.4.1     Dual chambers vs sediment MFCs -- 7.4.2     Construction materials, electrolytes, electrodes and separators -- 7.4.3     Electrode materials -- 7.4.4     Separators -- 7.4.5     Effect of light intensity, temperature, DO, CO 2 , pH and salts -- 7.5 Economic Importance of PMFCs -- 7.6 Future Perspectives -- References -- Chapter 8 :  Integrated anaerobic digestion and algae cultivation -- 8.1 Introduction -- 8.2 Algae Cultivation from AD Residues -- 8.2.1     Liquid effluent -- 8.2.2     Digestate -- 8.3 AD as Energetic Valorization Route of Algae Biomass -- 8.3.1     AD of microalgae -- 8.3.2     Pretreatment of microalgal biomass -- 8.3.3     Anaerobic co-digestion -- 8.4 Algae Cultivation for Biogas Upgrading -- 8.5 Coupling Technologies for Sustainable Biorefineries -- 8.5.1     Biorefinery based on integrated microalgae and AD technologies -- 8.5.2     Environmental impacts of integrated microalgae and AD technologies -- 8.5.3     Insights for improving the sustainability performance of integrated microalgae and AD technologies -- 8.6 Challenges and Future Perspectives -- References -- Chapter 9 :  Algae for wastewater treatment and biofuel production -- 9.1 Introduction -- 9.2 Characterization of Microalgae Grown in Wastewater for Biofuel Production -- 9.3 Biodiesel Production from Microalgae Grown in Wastewater -- 9.3.1     Biodiesel production process -- 9.3.2     Types of microalgae grown in wastewater for biodiesel production -- 9.4 Bioethanol Production from Microalgae Grown in Wastewater -- 9.4.1     Bioethanol production process -- 9.4.2     Hydrolysis -- 9.4.3     Fermentation -- 9.5 Conclusions and Perspectives -- References -- Part 4: Algal Biotechnology.

Chapter 10 :  Advanced value-added bioproducts from microalgae -- 10.1 Introduction -- 10.2 Market Value of Algae-Based High-Value Compounds -- 10.3 High-Value Products Used in Different Sectors -- 10.3.1     Cosmetics -- 10.3.2     Pharmaceuticals -- 10.3.3     Food supplements -- 10.3.3.1     Protein content of algae -- 10.3.3.2     Single-cell protein -- 10.3.3.3     Carbohydrates -- 10.3.3.4     Lipids -- 10.3.3.5     Vitamins -- 10.3.3.6     Minerals -- 10.3.4     Agricultural products -- 10.3.4.1     Biofertilizer/biostimulants -- 10.3.4.2     Plant growth-promoting substances/hormones -- 10.3.4.3     Biopesticides -- 10.3.5     Construction sector -- 10.4 Constraints of Algal Biomass Production and Application -- 10.5 Conclusion -- Acknowledgment -- References -- Chapter 11 :  Production of biopolymers from microalgae and cyanobacteria -- 11.1 Introduction -- 11.2 Structure and Properties of Biodegradable Bioplastics -- 11.3 Employing Microalgae and Cyanobacteria for Bioplastic Production -- 11.3.1     Cultivation conditions -- 11.3.1.1     Photoautotrophic, heterotrophic, or mixotrophic operational mode -- 11.3.1.2     Nutrient availability -- 11.3.1.3     Light -- 11.3.1.4     Wastewater as a feedstock for microalgae and cyanobacteria cultivation -- 11.3.2     Advantages of PHA production from microalgae and cyanobacteria compared to bacteria -- 11.3.3     PHA blends -- 11.3.3.1     PHA blends with raw materials -- 11.3.3.2     PHA blends with biodegradable polymers -- 11.4 Downstream Processing of Bioplastic Recovery from Microalgae and Cyanobacteria -- 11.4.1     Harvesting -- 11.4.1.1     Centrifugation -- 11.4.1.2     Filtration -- 11.4.1.3    



Flocculation and coagulation -- 11.4.1.4     Gravity sedimentation -- 11.4.1.5     Flotation -- 11.4.2     Drying -- 11.4.3     Extraction -- 11.5 Challenges and Future Perspectives.

11.6 Conclusion.

Sommario/riassunto

This book explores the utilization of algal systems for resource recovery from waste and wastewater, providing comprehensive insights into existing technologies and advancements in the field. Topics covered include process fundamentals of algae-based wastewater treatment, metabolic modeling, and algae-bacteria interactions. The book also addresses the challenges and engineering solutions for wastewater treatment, and presents case studies on coculturing microalgae with methanotrophs for enhanced nutrient recovery. It discusses the valorization of algae-based processes through integration with technologies like anaerobic digestion and biogas upgrading. Intended for undergraduate and graduate students in environmental sciences, the book is also valuable for researchers, engineers, and policy makers interested in algal systems for waste management.