1.

Record Nr.

UNINA9910767587903321

Titolo

Data mining for biomedical applications : PAKDD 2006 workshop, BioDM 2006, Singapore, April 9, 2006 : proceedings / / Jinyan Li, Qiang Yang, Ah-Hwee Tan (eds.)

Pubbl/distr/stampa

Berlin, : Springer, c2006

ISBN

3-540-33105-0

Edizione

[1st ed. 2006.]

Descrizione fisica

1 online resource (VIII, 155 p.)

Collana

LNCS sublibrary. SL 8, Bioinformatics

Lecture notes in computer science, , 0302-9743 ; ; 3916. Lecture notes in bioinformatics

Altri autori (Persone)

LiJinyan, Ph. D.

YangQiang <1961->

TanAh-Hwee

Disciplina

610.285

Soggetti

Medical informatics

Data mining

Artificial intelligence - Medical applications

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"... papers selected for presentation at the First Workshop on Data Mining for Biomedical Applications (BioDM 2006) ... in conjunction with the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006)"--Pref.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Keynote Talk -- Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions -- Database and Search -- A Database Search Algorithm for Identification of Peptides with Multiple Charges Using Tandem Mass Spectrometry -- Filtering Bio-sequence Based on Sequence Descriptor -- Automatic Extraction of Genomic Glossary Triggered by Query -- Frequent Subsequence-Based Protein Localization -- Bio Data Clustering -- gTRICLUSTER: A More General and Effective 3D Clustering Algorithm for Gene-Sample-Time Microarray Data -- Automatic Orthologous-Protein-Clustering from Multiple Complete-Genomes by the Best Reciprocal BLAST Hits -- A Novel Clustering Method for Analysis of Gene Microarray Expression Data -- Heterogeneous Clustering Ensemble Method for Combining Different Cluster Results -- In-silico Diagnosis -- Rule Learning for Disease-Specific Biomarker Discovery



from Clinical Proteomic Mass Spectra -- Machine Learning Techniques and Chi-Square Feature Selection for Cancer Classification Using SAGE Gene Expression Profiles -- Generation of Comprehensible Hypotheses from Gene Expression Data -- Classification of Brain Glioma by Using SVMs Bagging with Feature Selection -- Missing Value Imputation Framework for Microarray Significant Gene Selection and Class Prediction -- Informative MicroRNA Expression Patterns for Cancer Classification.