1.

Record Nr.

UNINA9910767549303321

Titolo

Biotechnology and Omics Approaches for Bioenergy Crops / / edited by Muhammad Aasim [and five others]

Pubbl/distr/stampa

Singapore : , : Springer, , [2023]

©2023

ISBN

981-9949-54-8

Edizione

[First edition.]

Descrizione fisica

1 online resource (298 pages)

Disciplina

306.4409113

Soggetti

Plant biotechnology

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Intro -- Preface -- Contents -- Editors and Contributors -- About the Editors -- Contributors -- 1: Bioenergy Crops in the Perspective of Climate Change -- 1.1  Introduction -- 1.2  Fossil Fuels and Global Climate Change -- 1.3  Mitigating Climate Change via Bioenergy Crops -- 1.4  Positive Impacts of Bioenergy Crops on Environment -- 1.5  Land-Use Change and Bioenergy Crops -- 1.6  Potential Bioenergy Crops -- 1.6.1  Maize -- 1.6.2  Sweet Sorghum -- 1.6.3  Sugarcane -- 1.6.4  Hemp -- 1.6.5  Jerusalem Artichoke -- 1.6.6  Switchgrass -- 1.6.7  Cardoon -- 1.7  Bioenergy Crops and Marginal Lands -- 1.8  Future of Bioenergy Crops -- 1.9  Conclusion -- References -- 2: Major and Potential Biofuel Crops -- 2.1  Introduction -- 2.1.1  Maize (Zea mays L.) -- 2.1.2  Sugarcane (Saccharum officinarum L.) -- 2.1.3  Sweet Sorghum (Sorghum bicolor L.) -- 2.1.4  Sugar Beet (Beta vulgaris) -- 2.1.5  Soybean (Glycine max L.) -- 2.1.6  Rapeseed (Brassica napus) -- 2.1.7  Palm Oil (Elaeis guineensis) -- 2.1.8  Jatropha (Jatropha curcas L.) -- 2.2  Potential and Promising Biofuel Crops -- 2.2.1  Tobacco (Nicotiana tabacum) -- 2.2.2  Cotton (Gossypium hirsutum) -- 2.2.3  Cassava (Manihot esculenta) -- 2.2.4  Sweet Potato (Ipomoea batatas L.) -- References -- 3: Biotechnological Approaches for the Production of Bioenergy -- 3.1  Introduction -- 3.2  Types of Bioenergy -- 3.2.1  Bioethanol -- 3.2.2  Biodiesel -- 3.2.3  Biohydrogen -- 3.3  Biotechnological Approaches for Biofuel Production -- 3.3.1  Isolation of Enzymes from Microbial Sources -- 3.3.1.1  Amylase and Cellulase



Enzymes -- Sources -- Identification and Isolation of Enzymes from Microbial (Bacterial and Fungal) Sources -- Identification of Bacteria and Fungi Producing Amylase and Cellulase -- PCR Amplification of Specific Genes -- Functional Gene Microarray -- Metagenomic Analysis -- Proteomic Analysis.

Enzyme Screening -- Enzyme Production -- Cell Disruption -- Enzyme Purification -- Enzyme Characterization -- 3.3.2  Microbial Fermentation and Enzyme Hydrolysis for the Production of Bioenergy -- 3.3.2.1  Bioethanol -- First- and Second-Generation Bioethanol Production -- Feedstock Preparation for Bioethanol Production -- Grinding and Milling of Feedstock -- Pretreatment -- Hydrolysis and Fermentation -- Separation and Dehydration -- 3.3.2.2  Third Generation Bioethanol Production -- 3.3.2.3  Biodiesel -- 3.3.2.4  Feedstock Preparation -- 3.3.2.5  Transesterification -- 3.3.2.6  Separation -- 3.3.2.7  Washing and Drying -- 3.3.2.8  Storage and Distribution -- 3.3.2.9  Biohydrogen -- Dark Fermentation -- Photo Fermentation -- Algal Hydrogen Production -- Biophotolysis -- 3.4  Genetic Engineering and Bioenergy Production -- 3.4.1  Plant Biomass Yield Improvement -- 3.4.2  Improving the Conversion of Plant Biomass into Biofuels -- 3.4.3  Reduced Environmental Impact -- 3.4.4  Sustainable Production -- 3.4.5  Genetic Engineering and Production of Bioethanol -- 3.4.5.1  Metabolic Engineering -- 3.4.5.2  Genome Shuffling -- 3.4.5.3  CRISPR-Cas9-Based Genome Editing -- 3.4.5.4  Gene Cloning -- 3.4.5.5  Genetic Engineering and Biodiesel Production -- 3.4.5.6  Metabolic Engineering -- 3.4.5.7  Gene Overexpression -- 3.4.5.8  CRISPR-Cas9-Based Genome Editing -- 3.4.6  Genetic Engineering and Production of Biohydrogen -- 3.4.7  Genetic Engineering and Ethical Considerations in Bioenergy Production -- 3.4.7.1  Genetic Engineering and Ecosystem Safety -- 3.4.7.2  Genetic Engineering and Ethical Concerns in Bioenergy Production -- 3.4.7.3  Public Acceptance for Genetically Engineered Biofuels -- 3.5  Biorefineries and Production of Bioenergy -- 3.5.1  Importance of Biorefineries in the Production of Biofuels -- 3.5.1.1  Feedstock Preparation/Pretreatment.

3.5.1.2  Biomass Conversion/Hydrolysis -- 3.5.1.3  Byproduct Recovery -- 3.6  Environmental and Economic Considerations of Bioenergy Fuels -- 3.6.1  Important Environmental Considerations of Biofuel Production (Jeswani et al. 2020) -- 3.6.1.1  Land Usage -- 3.6.1.2  Less Pollutant -- 3.6.1.3  Water Usage for the Production of Biofuel Crops -- 3.6.1.4  Soil Degradation -- 3.6.2  Economic Considerations -- 3.6.2.1  Cost of Production -- 3.6.2.2  Energy Security -- 3.6.3  Economic Viability of Biofuel Production from Biotechnology -- 3.6.3.1  Feedstock Costs and Biotechnology -- 3.6.3.2  Processing Costs of Feedstocks -- 3.6.3.3  Market Demand and Public Interest -- 3.7  Future Prospects -- References -- 4: Integrated OMIC Approaches for Bioenergy Crops -- 4.1  Introduction -- 4.2  Overview of OMIC Approaches -- 4.3  Integrated OMIC Approaches -- 4.4  Challenges and Future Directions -- 4.5  Conclusion -- References -- 5: Genomics of Bioenergy Crops -- 5.1  Introduction -- 5.2  Applications of Genomics in the Development of Energy Crops -- 5.3  Evolutionary Relationships in Higher Plants and Their Genomes -- 5.4  Genome Sequencing -- 5.5  Analysis of Genetic Variation -- 5.5.1  Target Traits for Bioenergy Plant Improvement -- 5.6  Model Bioenery Crops -- 5.7  Genomics of Specific Bioenergy Species -- 5.8  Sorghum -- 5.9  Sugarcane -- 5.10  Maize -- 5.11  Poplar -- 5.12  Eucalyptus -- References -- 6: Omics Approaches for Sorghum: Paving the Way to a Resilient and Sustainable Bioenergy Future -- 6.1  Introduction -- 6.2  Abiotic Stresses -- 6.3  Genomic Advances for Abiotic Stress Tolerance --



6.3.1  Molecular Marker Resources -- 6.3.2  Identification of Loci Governing Abiotic Stress Through QTL Mapping -- 6.3.3  Genome-Wide Association Studies (GWAS) -- 6.3.4  Genomic Selection for Abiotic Stress in Sorghum -- 6.4  Advances in Transcriptomics.

6.5  Proteomics -- 6.6  Metabolomics -- 6.7  Integration of Omics Technologies -- 6.8  Conclusions -- References -- 7: Exploring Omics Approaches to Enhance Stress Tolerance in Soybean for Sustainable Bioenergy Production -- 7.1  Introduction -- 7.2  Impact of Abiotic and Biotic Stressors on Soybean -- 7.3  Omics Approaches in the Technological Era -- 7.3.1  Genomic Advances for Abiotic Stress Tolerance in Soybean -- 7.3.2  QTL Mapping for Abiotic Stress Tolerance in Soybean -- 7.3.2.1  Genome-Wide Association Studies (GWAS) in Soybean -- 7.4  Proteomics in Soybean -- 7.5  Omics Approaches for Biotic Stresses -- 7.5.1  Soybean Genomics -- 7.5.1.1  Breeding for Biotic Challenges in Soybeans with the Help of QTL and Meta-QTL -- 7.5.1.2  Exploring Biotic Stress Resistance Through Genome-Wide Association Mapping -- 7.5.2  Transcriptomics of Soybean -- 7.5.2.1  Northern Blot Study of Soybean to Assess Biotic Stress -- 7.5.2.2  Microarray İnvestigation of Soybean Biotic Stress Tolerance -- 7.5.2.3  Assessment of RNA-Seq Data for Soybean Biotic Stress Responses -- 7.5.2.4  MicroRNAs' Role in Soybean Biotic Stress Challenges -- 7.6  Soybean Phenomics -- 7.7  Soybean Proteomics -- 7.8  Conclusion -- References -- 8: Advanced and Sustainable Approaches in Sugarcane Crop Improvements with Reference to Environmental Stresses -- 8.1  Introduction -- 8.2  Markers-Assisted Breeding (MAB) in Sugarcane -- 8.2.1  Application of MMs in Sugarcane Research -- 8.2.2  Molecular Markers (MMs) Related to Sugarcane Biotic Stresses -- 8.2.3  Molecular Markers (MMs) Related to Sugarcane Abiotic Stresses -- 8.3  Sugarcane Genetic Transformation -- 8.3.1  Transformation Approaches -- 8.3.2  Genome Editing (GE) -- 8.3.3  Transformation Approaches in Sugarcane Against Biotic Stresses -- 8.3.4  Transformational Strategies for Abiotic Stresses.

8.4  Application of Omics Approaches in Sugarcane Crop Improvements -- 8.4.1  Sugarcane Genomics -- 8.4.2  Sugarcane Transcriptomics -- 8.4.3  Sugarcane Proteomics -- 8.4.4  Sugarcane Metabolomics -- 8.5  Conclusion -- References -- 9: Role of Endophytes in the Regulation of Metabolome in Bioenergy Crops -- 9.1  Introduction -- 9.2  Overview of the Chapter -- 9.3  Types of Endophytes and Their Distribution in Bioenergy Crops -- 9.4  Endophyte-Plant Interactions and Their Impact on the Metabolome -- 9.5  Endophyte-Mediated Regulation of Bioenergy Crop Growth and Development -- 9.6  Conclusion -- 9.7  Future Perspective -- References -- 10: Cotton Stalks: Potential Biofuel Recourses for Sustainable Environment -- 10.1  Introduction -- 10.2  Cotton Crop Stalk as Sustainable Biofuel Resources -- 10.3  Biofuels from Cotton Stalks -- 10.3.1  How to Generate Biofuel from Cotton Stalks -- 10.3.1.1  Pyrolysis -- 10.3.1.2  Fermentation -- 10.3.1.3  Gasification -- 10.3.1.4  Hydrolysis -- 10.3.2  Biofuel Generation from Cotton Stalks -- 10.3.2.1  Bio-Oil -- 10.3.2.2  Syngas -- 10.3.2.3  Ethanol -- 10.3.2.4  Biogas -- 10.4  Value Addition Through Biofuel Production by Using Cotton Stalks After Crop Harvest -- 10.5  Biofuel and the Cotton Stalk Economics Potential -- 10.6  Conclusion -- References -- 11: Harmful Insects in Some Biofuel Plants and Their Biology -- 11.1  Introduction -- 11.2  Canola (Brassica napus L.) Harmful Insects -- 11.2.1  Cabbage-Stem Flea Beetle (Psylliodes chrysocephala L.) -- 11.2.2  Diamondback Moth (Plutella xylostella L.) -- 11.2.3  Winter Stem Weevil [(Ceutorhynchus picitarsis (G.)] -- 11.2.4  Cabbage Seed Pod Weevil (Ceutorhynchus



pleurostigma M.) -- 11.2.5  Red Turnip Beetle [(Entomoscelis adonidis (Paal)] -- 11.2.6  Cabbage Bug (Eurydema ornatum L.) -- 11.2.7  Cabbage Aphid [Brevicoryne brassicae (L.)].

11.3  Safflower (Carthamus tinctorius L.) Harmful Insects.