1.

Record Nr.

UNINA9910793328803321

Autore

Saxton Juliana <1933->

Titolo

Asking better questions : teaching and learning for a changing world / / Juliana Saxton [and three others]

Pubbl/distr/stampa

Markham, Ontario : , : Pembroke Publishers Limited, , [2018]

©2018

ISBN

1-55138-935-5

Edizione

[Third edition.]

Descrizione fisica

1 online resource (129 pages) : illustrations

Disciplina

371.37

Soggetti

Questioning

Teaching

Learning

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910760280303321

Autore

Zieschang Paul-Hermann <1953->

Titolo

Hypergroups / / Paul-Hermann Zieschang

Pubbl/distr/stampa

Cham : , : Springer, , [2023]

©2023

ISBN

3-031-39489-5

9783031394898

Descrizione fisica

1 online resource (398 pages)

Disciplina

512.2

Soggetti

Hypergroups

Group theory

Discrete mathematics

Graph theory

Geometry

Group Theory and Generalizations

Discrete Mathematics

Graph Theory

Teoria de grafs

Geometria

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1 Basic Facts -- 2 Closed Subsets -- 3 Elementary Structure Theory -- 4 Subnormality and Thin Residues -- 5 Tight Hypergroups -- 6 Involutions -- 7 Hypergroups with a Small Number of Elements -- 8 Constrained Sets of Involutions -- 9 Coxeter Sets of Involutions -- 10 Regular Actions of (Twin) Coxeter Hypergroups.

Sommario/riassunto

This book provides a comprehensive algebraic treatment of hypergroups, as defined by F. Marty in 1934. It starts with structural results, which are developed along the lines of the structure theory of groups. The focus then turns to a number of concrete classes of hypergroups with small parameters, and continues with a closer look at the role of involutions (modeled after the definition of group-theoretic



involutions) within the theory of hypergroups. Hypergroups generated by involutions lead to the exchange condition (a genuine generalization of the group-theoretic exchange condition), and this condition defines the so-called Coxeter hypergroups. Coxeter hypergroups can be treated in a similar way to Coxeter groups. On the other hand, their regular actions are mathematically equivalent to buildings (in the sense of Jacques Tits). A similar equivalence is discussed for twin buildings. The primary audience for the monograph will be researchers working in Algebra and/or Algebraic Combinatorics, in particular on association schemes.