|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910746295803321 |
|
|
Titolo |
Machine Learning and Knowledge Discovery in Databases : Applied Data Science and Demo Track / / edited by Gianmarco De Francisci Morales [and five others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2023] |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[First edition.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (745 pages) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Computer Science Series ; ; Volume 14174 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Data mining |
Databases |
Machine learning |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Organization -- Invited Talks Abstracts -- Neural Wave Representations -- Physics-Inspired Graph Neural Networks -- Mapping Generative AI -- Contents - Part VI -- Applied Machine Learning -- Rectifying Bias in Ordinal Observational Data Using Unimodal Label Smoothing -- 1 Introduction -- 2 Related Work -- 3 Unimodal Label Smoothing Based on the Geometric Distribution -- 3.1 Motivation -- 3.2 Basic Unimodal Label Smoothing -- 3.3 Class-Wise Unimodal Label Smoothing Using a Smoothing Relation -- 3.4 Unimodal Smoothing Heuristics for Prescriptive Machine Learning -- 4 Evaluation -- 4.1 Relation and Priors Based Smoothing Results -- 4.2 Time Based Smoothing Results -- 5 Conclusion -- References -- Class-Conditional Label Noise in Astroparticle Physics -- 1 Introduction -- 2 Binary Classification in Astroparticle Physics -- 2.1 Source Detection -- 2.2 Noisy Labels of Real Telescope Data -- 3 Related Work on Class-Conditional Label Noise -- 3.1 Class Imbalance in CCN -- 3.2 Other Types of Label Noise -- 4 Partially-Known Class-Conditional Label Noise -- 5 Experiments -- 5.1 Baseline Methods -- 5.2 Merits of PK-CCN: Methodology -- 5.3 Merits of PK-CCN: Results on Conventional Imbalanced Data -- 5.4 Case Study: Detection of the Crab Nebula -- 6 Conclusion and Outlook -- References -- A Baseline |
|
|
|
|