1.

Record Nr.

UNINA9910743356503321

Autore

Shi Chuan

Titolo

Heterogeneous Graph Representation Learning and Applications / / by Chuan Shi, Xiao Wang, Philip S. Yu

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022

ISBN

981-16-6166-9

981-16-6165-0

Edizione

[1st ed. 2022.]

Descrizione fisica

1 online resource (329 pages)

Collana

Artificial Intelligence: Foundations, Theory, and Algorithms, , 2365-306X

Disciplina

511.5

Soggetti

Data mining

Machine learning

Artificial intelligence - Data processing

Data Mining and Knowledge Discovery

Machine Learning

Data Science

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Introduction -- The State-of-the-art of Heterogeneous Graph Representation -- Part One: Techniques -- Structure-preserved Heterogeneous Graph Representation -- Attribute-assisted Heterogeneous Graph Representation -- Dynamic Heterogeneous Graph Representation -- Supplementary of Heterogeneous Graph Representation -- Part Two: Applications -- Heterogeneous Graph Representation for Recommendation -- Heterogeneous Graph Representation for Text Mining -- Heterogeneous Graph Representation for Industry Application -- Future Research Directions -- Conclusion. .

Sommario/riassunto

Representation learning in heterogeneous graphs (HG) is intended to provide a meaningful vector representation for each node so as to facilitate downstream applications such as link prediction, personalized recommendation, node classification, etc. This task, however, is challenging not only because of the need to incorporate heterogeneous structural (graph) information consisting of multiple types of node and



edge, but also the need to consider heterogeneous attributes or types of content (e.g. text or image) associated with each node. Although considerable advances have been made in homogeneous (and heterogeneous) graph embedding, attributed graph embedding and graph neural networks, few are capable of simultaneously and effectively taking into account heterogeneous structural (graph) information as well as the heterogeneous content information of each node. In this book, we provide a comprehensive survey of current developments in HG representation learning. Moreimportantly, we present the state-of-the-art in this field, including theoretical models and real applications that have been showcased at the top conferences and journals, such as TKDE, KDD, WWW, IJCAI and AAAI. The book has two major objectives: (1) to provide researchers with an understanding of the fundamental issues and a good point of departure for working in this rapidly expanding field, and (2) to present the latest research on applying heterogeneous graphs to model real systems and learning structural features of interaction systems. To the best of our knowledge, it is the first book to summarize the latest developments and present cutting-edge research on heterogeneous graph representation learning. To gain the most from it, readers should have a basic grasp of computer science, data mining and machine learning.