1.

Record Nr.

UNINA9910741177203321

Autore

Barreira Luis

Titolo

Dimension theory of hyperbolic flows / / Luis Barreira

Pubbl/distr/stampa

Cham, Germany, : Springer, c2013

ISBN

3-319-00548-0

Edizione

[1st ed. 2013.]

Descrizione fisica

1 online resource (155 p.)

Collana

Springer monographs in mathematics

Disciplina

515.353

Soggetti

Differential equations, Hyperbolic

Dimension theory (Algebra)

Mathematics

Global analysis (Mathematics)

Differentiable dynamical systems

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction -- Suspension Flows -- Hyperbolic Flows -- Pressure and Dimension -- Dimension of Hyperbolic Sets -- Pointwise Dimension and Applications -- Suspensions over Symbolic Dynamics -- Multifractal Analysis of Hyperbolic Flows -- Entropy Spectra -- Multidimensional Spectra -- Dimension Spectra -- References -- Index.

Sommario/riassunto

The dimension theory of dynamical systems has progressively developed, especially over the last two decades, into an independent and extremely active field of research. Its main aim is to study the complexity of sets and measures that are invariant under the dynamics. In particular, it is essential to characterizing chaotic strange attractors. To date, some parts of the theory have either only been outlined, because they can be reduced to the case of maps, or are too technical for a wider audience. In this respect, the present monograph is intended to provide a comprehensive guide. Moreover, the text is self-contained and with the exception of some basic results in Chapters 3 and 4, all the results in the book include detailed proofs.   The book is intended for researchers and graduate students specializing in dynamical systems who wish to have a sufficiently comprehensive view of the theory together with a working knowledge of its main techniques. The discussion of some open problems is also included in



the hope that it may lead to further developments. Ideally, readers should have some familiarity with the basic notions and results of ergodic theory and hyperbolic dynamics at the level of an introductory course in the area, though the initial chapters also review all the necessary material.