| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910452112103321 |
|
|
Titolo |
Sediment dredging at Superfund megasites [[electronic resource] ] : assessing the effectiveness / / Committee on Sediment Dredging at Superfund Megasites, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, National Research Council of the National Academies |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Washington, D.C., : National Academies Press, c2007 |
|
|
|
|
|
|
|
ISBN |
|
1-281-10997-5 |
9786611109974 |
0-309-10978-7 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (316 p.) |
|
|
|
|
|
|
Soggetti |
|
Dredging - Environmental aspects |
Dredging spoil |
Contaminated sediments - Environmental aspects |
Hazardous waste site remediation - United States |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910739463803321 |
|
|
Autore |
Lee Juhyoung |
|
|
Titolo |
Deep Reinforcement Learning Processor Design for Mobile Applications / / by Juhyoung Lee, Hoi-Jun Yoo |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2023.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (105 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Electronic circuits |
Embedded computer systems |
Microprocessors |
Computer architecture |
Electronic Circuits and Systems |
Embedded Systems |
Processor Architectures |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Background of Deep Reinforcement Learning -- Group-Sparse Training Algorithm for Accelerating Deep Reinforcement Learning -- An Energy-Efficient Deep Reinforcement Learning Processor Design -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Exponent-Computing-in-Memory for DNN Training Processor with Energy-Efficient Heterogeneous Floating-point Computing Architecture. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book discusses the acceleration of deep reinforcement learning (DRL), which may be the next step in the burst success of artificial intelligence (AI). The authors address acceleration systems which enable DRL on area-limited & battery-limited mobile devices. Methods are described that enable DRL optimization at the algorithm-, architecture-, and circuit-levels of abstraction. Enables deep reinforcement learning (DRL) optimization at algorithm-, architecture-, and circuit-levels of abstraction; Includes methodologies that can |
|
|
|
|
|
|
|
|
|
|
reduce the high cost of DRL; Uses analysis of computational workload characteristics of DRL in the context of acceleration. |
|
|
|
|
|
| |