1.

Record Nr.

UNINA9910739437803321

Autore

Patel Vishal M

Titolo

Sparse representations and compressive sensing for imaging and vision / / Vishal M. Patel, Rama Chellappa

Pubbl/distr/stampa

New York, : Springer, 2013

ISBN

1-299-33549-7

1-4614-6381-5

Edizione

[1st ed. 2013.]

Descrizione fisica

1 online resource (x, 102 pages) : illustrations (some color)

Collana

SpringerBriefs in electrical and computer engineering

Altri autori (Persone)

ChellappaRama

Disciplina

621.382

621.3822

Soggetti

Imaging

Signal processing - Mathematics

Vision

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Introduction -- Compressive Sensing -- Compressive Acquisition -- Compressive Sensing for Vision -- Sparse Representation-based Object Recognition -- Dictionary Learning -- Concluding Remarks.

Sommario/riassunto

Compressed sensing or compressive sensing is a new concept in signal processing where one measures a small number of non-adaptive linear combinations of the signal.  These measurements are usually much smaller than the number of samples that define the signal.  From these small numbers of measurements, the signal is then reconstructed by non-linear procedure.  Compressed sensing has recently emerged as a powerful tool for efficiently processing data in non-traditional ways.  In this book, we highlight some of the key mathematical insights underlying sparse representation and compressed sensing and illustrate the role of these theories in classical vision, imaging and biometrics problems.